Smart Bioprocess Development Grand Challenge

Webinar May 2024

Digital Technologies in Bioprocess Development: Accelerating Medicines to Market

Agenda

- 10:00 Owen IUK Introduction
- 10:05 Elaine Introduction to CPI, and Smart Bioprocessing Grand Challenge 10 minutes
- 10:15 Lukas structure of project, digital infrastructure, MMIC Data Institute 10 minutes
- 10:25 Sean analytical platforms, example data, experimental automation (closed loop) 10 minutes
- 10:35 Alessandro Butte Analysis and modelling of LC-MS data 10 minutes
- 10:45 Q&A 10 minutes
- 10:55 Close

We help companies to develop, prove, scale-up and commercialise new products and processes

We help deliver, de-risk and accelerate...

...your concepts into successful products

...at our national centres of excellence across the United Kingdom

The Smart Bioprocess Development project is a collaboration between

- CPI
- DataHow
- Waters
- The Earlham Institute

Problem Statement

Process Development is slow and very expensive.

Typical process development can take months or years, increasing drug costs and time-to-market.

Difficult to use learnings from one process or product to inform new ones

> Need to "start from scratch", or at least a low baseline.

Model-driven process development offers reductions in # of experiments but is currently limited in use.
➢ Hampered by limitations of transferability and data.

No-one has enough suitable data

- > No structured dataset, analytics not sufficient
- Datasets not rich or varied enough for transfer learning

Smart Bioprocess Development Vision

Instead of DoE-based process...

Y	
	,

Use **powerful analytics** to characterise a sample from a new process Characterisation is compared to **large dataset** of previous experiments from many processes

Predictive models give optimised process and process parameters

Rethinking Datasets

How do we structure and share data?

Better Development Tools

How do we improve data we are taking?

Smarter Modelling

How do we improve understanding and prediction?

Rethinking Datasets

How do we structure and share data?

Many Processes

CDI

Rethinking Datasets

How do we structure and share data?

Better Development Tools

How do we improve and utilise data we are taking?

Product Focused **Analytics**

Data Rich Analytics

Capture Product and Impurity **Behaviour**

www.uk-cpi.c

Smarter Modelling

How do we improve understanding and prediction?

Individual & Simplistic Modelling

Holistic & Hybrid Models

Proof of Concept/Ongoing Work

Proof of Concept Study Funded by **Innovate UK** to explore concept for clarification and purification prediction, and to develop the Scope and Consortium for the full Grand Challenge.

PoC funded May 2023 – October 2024

Working with: **DataHow** as a hybrid modelling partner

Earlham Institute for Next Gen Sequencing data Waters as LC/MS Partner

Rethinking Datasets Data and digital infrastructure

Lukas Kuerten

Smart Bioprocess Development Vision

Instead of DoE-based process...

Use an **analytical platform** to characterise a sample from a new process

Characterisation is compared to **large dataset** of previous experiments from many processes

Predictive models

give optimised process and process parameters

Modelling – Chromatography Example

Use LC/MS as a platform analytic for purification experiments.

Purification

Use library of experiments for hybrid model creation.

Data Institute Approach

- Scalable, Cloud-Based infrastructure for data security and future growth. Working with AWS to design concept.
- Large, analytically rich & structured core dataset accessible to all partners to provide orientation + structure.
- Partners can contribute data and use as modelling platform.

Let's innovate togethe

Data Institute Approach

Partners can utilise institute for model building with own data

Full cross-organisation model capability achieved by federated learning.

Federated Learning

Local training of model

Flexible Data Ontology

Differences in data structure across and between organisations makes data sharing & federated learning challenging.

Partner A Structure

Flexible Data Ontology

Build **shared language & structure** to describe relevant processes and analytical results, including their sensitivities.

Look to align with NIIMBL Bioprocess Manufacturing ontology

Allow greater analytical flexibility & use of historical data

Flexible Data Ontology - Example

Flexible Data Ontology - Example

Combining Models

Analytics and models designed to tie together to provide **holistic process modelling** Connect into **BioSolve** to provide economic & environmental optimisation

Combining Models

Platforms and models designed to tie together to provide **holistic process modelling** Connect into **BioSolve** to provide economic & environmental optimisation

Let's innovate togethe

Better Development Tools

Sean Ruane

Proof of Concept/Ongoing Work

Proof of Concept Study Funded by **Innovate UK** to explore concept for clarification and purification prediction, and to develop the Scope and Consortium for the full Grand Challenge.

PoC funded May 2023 – October 2024

Working with: **DataHow** as a hybrid modelling partner

Earlham Institute for Next Gen Sequencing data Waters as LC/MS Partner

LC/MS

срі

🌡 cpi

Use LC/MS as a platform analytic for purification experiments.

Purification

Use library of experiments for hybrid model creation.

Purification Analytical Platform – Proof of Concept

Example Data – Cation Exchange Chromatography

Clarification - Objectives

Objective

Generate predictive models that can determine **filterability and filter performance** from an initial platform measurement, including predicting optimal filter trains.

Understand how **size and charge** predict filtration behaviour and design processes accordingly.

Choose optimal filters for a given reduction in particle content and turbidity.

C

Take Samples before and after filtration

Automating Experiments

Analytics

Automating Experiments

Analytics

Automating Experiments

Downstream Robot Scientist

Hybrid Models for Chromatography

Integrate ML to Speed Up Process Development

Alessandro Butté – CEO DataHow 02 May 2024

Our Technology

Our Technology

Hybrid Models

Allow both the reduction of data and experiments while increasing model robustness and predictivity thanks to knowledge integration.

Transfer Learning

Slash costs and risk by allowing both horizontal (from product to product) and vertical (from scale to scale) transfer of knowledge

Bayesian DoEs

Optimize experiment utility by efficiently integrating prior knowledge, risk in prediction, and process constraints

DataHow Hybrid Models the key performance driver

But what are they?

What we know about the process

Mechanistic models which describe known engineering and process knowledge

Ineffective when used alone Unable to describe complex behaviors and relationships present in biological systems (especially in USP)

Key impact within a hybrid model: Narrows the design space by eliminating areas which are known Hybrid models

What we don't know

Machine learning models which determine relationships and patters from raw process data to help explain complex relationships

Of limited use for PD when used alone High volumes of data required to produce high confidence in results (PD is data poor)

Key impact within a hybrid model:

Within a restricted area of exploration (supported by mechanistic models), the provide answers to areas of low understanding

How Hybrid Models Work

Chromatographic Modelling: State of the Art

Phenomena in the bulk/continuous phase can be well predicted with mechanistic modeling

Phenomena to consider

$$) \frac{\partial c_i}{\partial t} = -v \frac{\partial (c_i)}{\partial x} + D_i \cdot \frac{\partial^2 c_i}{\partial x^2} - \phi \cdot J_i \cdot \alpha_p$$

1. Transport through the column

G. Guiochon, D. G. G. Shirazi, A. Felinger, A. M. Katti, Fundamentals of Preparative and Nonlinear Chromatography (2nd Edition), Academic Press, **2006**. D. Pfister, L. Nicoud, M. Morbidelli, Continuous Biopharmaceutical Processes: Chromatography, Bioconjugation, and Protein Stability, Cambridge University Press, **2018**.

Chromatographic Modelling: State of the Art

Hybrid models can be highly beneficial also for well understood processes

Phenomena in the particle phase

- 1. Transport through the column
- 2. Film transport
- 3. Intra-particle Transport
- 4. Adsorption

Kinetics in the particle phase is also very well understood but very complex to describe

G. Guiochon, D. G. G. Shirazi, A. Felinger, A. M. Katti, Fundamentals of Preparative and Nonlinear Chromatography (2nd Edition), Academic Press, **2006**. D. Pfister, L. Nicoud, M. Morbidelli, Continuous Biopharmaceutical Processes: Chromatography, Bioconjugation, and Protein Stability, Cambridge University Press, **2018**.

$$\varepsilon_{p} \frac{\partial c_{i}}{\partial t} + (1 - \varepsilon_{p}) \cdot \frac{\partial q_{i}}{\partial t} = \frac{\varepsilon_{p} D_{p,i}}{r^{2}} \cdot \frac{\partial}{\partial r} \left(r^{2} \cdot \frac{\partial c_{i}}{\partial r} \right)$$
$$\varepsilon_{p} D_{p,i} \frac{\partial c_{i}}{\partial r} \bigg|_{R} = \frac{3k_{f}}{R} \cdot (c_{bulk,i} - c_{i})$$

Hybrid models for Chromatography

Example of model hybridization

- Lumped kinetic model as backbone
 - Scalable solution
 - Transferable to other cleaning procedures
 - Forecasting capability
- Hybridization of the uptake rate $\left(\frac{\partial q}{\partial t}\right)$
- Replace mechanistic equation with a neural network

Different Adsorption Isotherms

Narayanan H. et al., 2021 J. Chrom. A

Hybrid Models: Insights

Using hybrid models for mechanistic understanding of the process

ΤH

ΤM

0.46

0.52

0.80

0.94

0.93

-q)

Physical Consistency of NNs

C_p C_{buff} Q_{eq}

DataHow's proprietary knowledge transfer technology allows to bridge between donors & reduce experimental effort for validation.

Inspired by speech recognition, DataHow has developed a proprietary knowledge transfer technology that can be used to compare data of the same unit operation for various scales/sites.

Overall Procedure

Product Informed Hybrid Model

Towards the definition of an active sequential learning procedure

Model Structure

Learning and Design Procedure

Smart Bioprocessing Grand Challenge

Join us in transforming the future of bioprocessing!

Full Grand Challenge Structure

Questions

