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1. Introduction 
This report presents the findings from an assessment of the feasibility of using opportunistic data 

sources to enhance DFMC integrity in the maritime sector. This significant research initiative is 

undertaken as part of Work Package 8 (WP8) in the Integrated Navigation System-of-Systems 

PNT Integrity for Resilience (INSPIRe) project. 

1.1 Context and Objective  

WP8 assesses the feasibility of augmenting dual-frequency multi-constellation GNSS integrity 

monitoring using crowd-sourced integrity data from users. The work focuses on the maritime 

sector, considering potential expansion into other sectors where integrity is a key performance 

metric in critical applications. The objectives of WP8 are:  

• Assess the feasibility of incorporating crowdsourced user integrity data into the UK-wide 

dual-frequency, multi-constellation GNSS integrity monitoring system, considering 

different approaches and taking account of potential drawbacks.  

• Produce an outline functional design, including crowd-sourcing algorithms, to incorporate 

crowdsourcing into the UK-wide dual-frequency, multi-constellation GNSS integrity 

monitoring system addressed in WP7.  

• Develop and run a mock-up model, using a suitable software application, to: 

▪ Prove the crowd-sourcing concept; 

▪ Optimise the outline functional design for integrity crowd-sourcing in the UK 

maritime sector 

▪ Estimate the potential improvements to the operational performance and coverage 

of the integrity monitoring system by incorporating crowd-sourcing. 

• Develop a conceptual design for an e-Navigation service based on crowd-sourced integrity 

data organised through the Maritime Connectivity Platform (MCP); 

• Produce a development and implementation plan for integrity crowd-sourcing directly for 

the maritime sector; and explore potential expansion into other sectors and applications 

with acknowledged requirements for high integrity (such as aviation, rail and connected 

autonomous vehicles). 

• Construct an exploitation plan for the crowd-sourcing concept 
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1.2 Report structure  

This report is structured into seven sections, encompassing the entirety of the work conducted in 
WP8 (WP8.1 to WP8.7). A visual representation of WP8 activities with the report structure is 
presented in Figure (1.1). The sections are outlined as follows: 

Section 2: Assessing the Feasibility of Opportunistic Data Sources 
This section delves into the viability of integrating opportunistic data sources, and evaluating their 
potential benefits and challenges. 

Section 3: System-Level Crowdsourcing 
This section utilises crowdsourcing at the system level for error characterisation, the section 
includes the functional design and associated mathematical models and evaluates the error 
characterisation using Gaussian, Generalised-t, Generalised Extreme Value (GEV), Logistic, 
Laplace, and Cauchy distributions.  

Section 4: User-Level Crowdsourcing 
This section presents the development of the crowdsourcing positioning and integrity layer at the 
user-level, which is based on computing the position using nearby vessels and range 
measurements. Performance is evaluated using a simulation platform developed by Imperial 
College.  

Section 5: Crowdsourcing as an e-Navigation Service 

This section proposes the implementation of an e-Navigation Service within the Maritime 
Connectivity Platform (MCP) as a more secure and reliable method for transferring position and 
integrity information between vessels, compared to the current Automatic Identification System 
(AIS). 

Section 6: Development and Implementation Plan 
This section presents a comprehensive plan detailing the steps for developing/improving and 
implementing crowdsourcing strategies.  

Section 7: Exploitation Plan 
A strategic plan aimed at maximising the benefits and opportunities arising from the 
implementation of crowdsourcing.  

 

Figure 1.1: WP8 activities with the report structure 
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1.3 Abbreviations  

Abbreviation Description 

AIS Automatic Identification System 

ASF Additional Secondary Factor 

CDF Cumulative Distribution Function 

CORS Continuously Operating Reference Stations 

ECEF Earth-Centered, Earth-Fixed 

eCDF empirical CDF 

eLoran Enhanced Long Range Navigation 

FDE Failure Detection and Exclusion 

GEV Generalised Extreme Value 

GNSS Global Navigation Satellite System 

IPS Indoor Positioning System 

ML Machine learning 

MCP Maritime Connectivity Platform 

MSE Mean Squared Error 

OLS Ordinary Least Squares 

OS Ordnance Survey 

PDF Probability Density Function 

PNT Positioning, Navigation, and Timing  

RMS Root Mean Square 

SPP Single Point Positioning 

SoOP Signals of Opportunity Positioning 

TDoA Time Difference of Arrival 

ToA Time of Arrival 

UWB Ultra-Wideband 
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2. Opportunistic data source feasibility assessment 
Utilising opportunistic data sources within INSPIRe aims at the first level to support the system 

in achieving its requirements, especially during the port phase, where GNSS standalone cannot 

achieve the system requirements, as evidenced in the (INSPIRe-GMVNSL-D4.1-v1.1, 2024; 

INSPIRe-GMV-D3.1-v1.1, 2023) reports findings. In addition, the opportunistic data sources can 

enhance system performance, leading to a reduction in the protection level and, subsequently, 

the required alarm limit, ultimately enhancing maritime operations. 

The workflow of the opportunistic data source feasibility assessment, presented in Figure 2.1, has 

six stages: i) definition of ‘opportunistic data sources’, ii) identifying relevant opportunistic data 

sources, iii) describing the data sources, iv) identifying key challenges and limitations, v) 

highlighting the benefits of opportunistic data sources, and vi) selecting opportunistic approaches. 

Starting with the first stage, establishing a clear definition for ‘opportunistic data sources’ is central 

to identifying which opportunistic data sources can benefit INSPIRe. The ‘opportunistic data 

sources’ can be defined either: as additional PNT (Positioning, Navigation, and Timing) data 

sources that are not typically utilised as PNT sources within the context of INSPIRe, or as PNT 

data sources that were not initially designed to serve as PNT sensors (e.g. Bluetooth technology). 

Both definitions are encompassed in WP8. 

 

Figure 2.1: The workflow of the opportunistic data source feasibility assessment 

The second stage, identifying opportunistic data sources, includes reviewing PNT related 

literature and products (including applications, services and technologies including those from the 

research and industry communities). The opportunistic data sources in this report include: Signal-

of-opportunity (Indoor position system, eLoran, and AIS shore station), user-level crowdsourcing 
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(vessels and smartphones), and system-level crowdsourcing (CORS networks). The data sources 

are described in detail within stage three in Section 2.1.  

The fourth and fifth stages, identifying key challenges and limitations in INSPIRe and outlining the 

benefits of opportunistic data sources enable the selection of approaches used in INSPIRe as 

discussed in detail in Section 2.3.  

2.1 Opportunistic data sources 

2.1.1 User-level Crowdsourcing  

User-level crowdsourced positioning aims to enhance the accuracy and reliability of positioning 

services using nearby PNT devices (e.g., GNSS), or to provide positioning information for the 

users when GNSS is not available. In the maritime sector, the two main crowdsourced data 

sources are smartphones and nearby vessels/ships.  The former can provide position information 

with a low level of accuracy. In the integrity monitoring domain, Angrisano and Gaglione (2022) 

evaluated Smartphone GNSS performance in an urban scenario with RAIM application, showing 

that position RMS error achieved by the smartphone in complex environments after Failure 

Detection and Exclusion (FDE) varied between 16m – 105m. This study demonstrates that 

smartphone data cannot provide the required level of performance for INSPIRe, by comparing 

these results with the performance requirements. In addition, transferring positioning information 

from nearby smartphones to the vessels is a complex process.  

Utilising data from nearby vessels/ships is more reliable than smartphones, as the positioning 

accuracy of the GNSS devices in vessels/ships is significantly better. Unlike smartphones, the 

vessels' information is transmitted via Automatic Identification System (AIS) messages, which 

include positioning and integrity status information. In addition to positioning information, ranging 

sensors (e.g., Radar) are used to compute the distances between the vessels. Utilising both 

positioning data and range measurements, the vessels' positions can be computed.  

However, to the best of our current knowledge, there are no studies that have evaluated the 

protection level that can be computed using information from nearby vessels/ships’. Therefore, 

user-level positioning exploiting crowdsourced data and the corresponding integrity layer are 

developed and tested in this report in Section 4, presenting in detail the AIS messages and the 

mathematical models for positioning and integrity monitoring.  

2.2.2 Signal-of-opportunity 

• Shore-based Automatic Identification System positioning  

Shore-based Automatic Identification System (AIS) positioning is based on utilising AIS message 

information from shore stations and measuring Very High Frequency (VHF) radio signals. This 

technique is based on gauging the transmission delay of the VHF AIS signal emanating from the 

AIS shore stations. The Additional Secondary Factor (ASF) correction is applied to mitigate any 

errors in signal propagation. Ultimately, the vessel's location is deduced using a position algorithm 

that relies on the signal's travel time.  
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In this context, Hu et al., (2015) developed Shore-based AIS positioning based on the Time 

Difference of Arrival (TDOA) model, derived form Time of Arrival (ToA). They assessed this 

approach by utilising ASF correction to calculate the positions of vessels using data from three 

AIS-based stations. The results show that the RMS error in latitude and longitude were 4.224 and 

2.534 meters, respectively. They estimated the position error for dynamic positioning to be 9.851 

meters (95%).  However, the integrity aspect of this approach is still to evaluated, including 

computation of protection level and FDE.  

• Enhanced Long Range Navigation 

Enhanced Long Range Navigation (eLoran) is a terrestrial navigation system developed as an 

alternative to GNSS. eLoran uses low-frequency radio transmitters from multiple locations to 

deliver navigation services for vessels. Similar to Shore-based AIS positioning, ASF correction 

can be used to improve eLoran positioning accuracy. Some previous studies have explored using 

eLoran as an alternative to GNSS (e.g., Johnson et al., 2007; Son et al., 2020); however, eLoran 

integrity monitoring is still to be explored, with its development facing challenges due to the limited 

number of eLoran stations. 

As it is currently defined, eLoran no longer exists in Europe, where the system was switched off 

in 2015 (The Maritime Executive, 2016). This deactivation reflects a shift towards satellite-based 

navigation solutions and a move away from traditional, ground-based systems. Today, only a 

single Loran station remains operational in Europe, providing a limited scope of services—it offers 

a timing and data service utilised within the UK. However, there is a resurgence of global interest, 

including in the UK, in this technology. The UK minister for science, research, and innovation 

recently announced recently the government's policy framework for greater PNT resilience 

(Freeman,2023). The Framework includes the development of a proposal for a resilient, terrestrial, 

and sovereign eLoran system to provide a backup positioning and navigation. 

Indoor Positioning System  

Indoor Positioning System (IPS) is Signal-of-Opportunity based and can be utilised to support 

maritime navigation in the port phase. Several IPS technologies have been developed in the last 

two decades to support GNSS in indoor/complex environments such as Wifi, Bluetooth, RFID, 

and Ultra-WideBand (UWB). When evaluating IPS technologies, it is crucial to consider the entire 

end-to-end positioning process. This assessment encompasses factors like infrastructure 

availability, cost implications, and system requirements including the accuracy, which is 

influenced by elements such as measurement types, positioning methodology, measurement 

quantity, network design, node density, and environmental conditions.  

Generally speaking, WiFi-based positioning (Li et al., 2016; Talvitie et al;2015) is capable of 

achieving a moderate accuracy level, ranging from 2 to 10 meters. RFID-based IPS can attain 

meter-level accuracy in their active mode and accuracy ranging from centimetres to decimetres 

in passive mode (Chon et al.,2004; Bouet and Dossantos, 2008). However, this technology is 

hampered by its limited range and substantial implementation costs. Ultra-WideBand (UWB) 

technology is another option, offering accuracy between centimetres and decimeters, albeit 

accompanied by significant infrastructure expenses (Krishnan et al.,2007; Alarifi et al, 2016). 

Bluetooth-based IPS emerges as a cost-effective alternative, providing accuracy from decimeters 
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to meters (Eyng et al.,2020; Kluge et al.,2020), and incurring considerably lower costs in 

comparison to UWB and RFID-based IPS. Table (2.1) provides a summary of key IPS 

technologies, outlining their accuracy levels and key limitations.  

In the maritime sector, the deployment of these technologies is feasible and reliable only at the 

porting level, within a limited range.  In addition, the integrity monitoring for these technologies is 

still to be explored in detail, requiring further research.  

Technology Accuracy Key limitations 

UWB cm – dm level  

(10 -50 cm) 

- Infrastructure does not exist.  
- Metallic and liquid materials 

cause UWB signal interference 
- Not very secure 

Wifi meter level 

(2- 10 m) 

- Low accuracy  
- Not very secure  

Bluetooth meter level 

(1-3m) 

- Low accuracy  
 

RFID / 

passive 

cm to dm level (20 

cm – 100 cm) 

- Very small coverage small 
- The RF signal influenced by the 

antenna. 
- Cannot be integrated easily with 

other sensors.  
Table 2.1: key IPS technologies accuracy levels and key limitations 

2.2.3 System-level Crowdsourcing 

The System-level Crowdsources (e.g. CORS network) can be utilised as an opportunistic data 

source to support system-level integrity monitoring. This includes enhancing error 

characterisation, which is linked to positioning reliability and performance. In more detail, error 

characterisation takes place across three phases at the user level in positioning/integrity 

algorithms, and at two phases within system-level integrity monitoring. 

At the system level, error characterisation is defined through Probability Density Functions 

(PDFs), widely assumed by a Gaussian distribution. Subsequently, these are overbounded and 

transmitted to users. In addition, error characterisation is used in the Failure Detection and 

Exclusion (FDE) test statistic process at the system level. 

At the user level, error characterisation takes place in three phases (i) measurement error 

characterisation, (ii) position error characterisation, and (iii) residuals characterisation. The effects 

of these phases are apparent in the outputs of positioning algorithms, affecting estimated position, 

position uncertainty, protection level, and integrity alarms. Like at the system level, measurement 

error at the user level is also characterised by PDFs, generally following a Gaussian distribution. 

Through uncertainty propagation, position uncertainty is then calculated using the PDFs of 

measurement error. 

Furthermore, the outputs from the positioning algorithm are used as inputs for the integrity layer. 

This layer includes three main processes: FDE, protection level computation, and integrity alarm 
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generation. FDE commonly employs residuals-based test statistics, dependent on the 

characterisation of residuals. Similarly, the computation of protection levels is influenced by the 

characterisation of errors and residuals, since it is a function of measurements and position error 

characterisation, and the FDE process.   

GNSS errors, nevertheless, are not always well-characterised by the Gaussian distribution 

especially at the tail (Panagiotakopoulos et al., 2014).  Therefore, the Gaussian distribution could 

have a significant impact on all the elements (FDE, positioning uncertainty, and PL). Thus, several 

efforts have been made to replace Gaussian with alternatives to improve the performance. Of 

these efforts,  Panagiotakopoulos et al., (2014) evaluated the capability of the GEV distribution to 

characterise pseudorange error in static mode. The results showed that replacing the Gaussian 

distribution with the GEV distribution offers several advantages: (i) a more accurate distribution 

of residual errors and better representation of extreme errors at the tail, (ii) a less conservative 

safety threshold than the Gaussian based safety threshold derived for a given missed detection 

probability, and (iii) a better positioning quality. However, the work did not comprehensively and 

numerically assess distribution fitting and its impact on the system availability.  

2.2.4 Computer Vision Data Sources 

Computer vision sensors have been widely utilised for localization and positioning through 

Simultaneous Localization and Mapping (SLAM). SLAM operates by mapping the surrounding 

environment and determining the user's location within it in real-time. SLAM can be categorised 

based on the sensors used into vision-based  SLAM (Davison,2003; Schlegel et al., 2018), Lidar-

based SLAM(Kohlbrecher et al., 2011; Hess et al., 2016), Radar-based SLAM (Hong et al.,2020; 

Schuster et al.,2016), and hybrid SLAM (Bibby and Reid, 2010; Gallagher et al.,2021). The 

precision of SLAM is influenced by the number of features captured and the range/depth accuracy 

in real-time, making Lidar-based SLAM one of the most accurate forms. 

In maritime navigation, implementing SLAM has limitations in terms of system availability, as it 

relies on feature matching, difficult in environments lacking distinct features. In feature-poor 

environments like those in the ocean and coastal phases, there are not enough distinctive 

features to match, which may cause the SLAM system to fail. However, there are some features 

within the port environment. Nevertheless, the development of integrity monitoring in SLAM is still 

limited requiringfurther research. 

2.2 Benefits of opportunistic data sources in INSPIRe context    

The opportunistic data sources in Section 2.1 can support maritime navigation at both the user 

and system levels. Crowdsourced data (from smartphones and nearby vessels) can support the 

user level across all operational phases (Ocean, Coastal, HEA and Restricted, and Port). Utilising 

the crowdsourced positioning approach can provide higher performance in the port phase, where 

the number of nearby vessels is greater than in the other phases. 

In addition to crowdsourced data, signals-of-opportunity can support the user level. Some signals-

of-opportunity can be used only at the port with imitated range, such as IPS (Wi-Fi, Bluetooth, 
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and UWB), while eLoran and AIS base stations can be utilised at all operational levels (depending 

on eLoran availability). 

Since computer vision-based positioning (e.g., SLAM) requires features to be extracted and 

matched with pre-stored ones, this approach can only be applied at the port with limited ranges, 

due to the difficulty in finding features in other phases. Table (2.2) presents the opportunistic data 

sources, detailing their contribution to maritime navigation in terms of support at levels (user 

and/or system) and across different operational phases. 

Opportunistic approach Level Operation phase 

User System Ocean Coastal HEA and restricted Port 

User-level 
crowdsourcing 

- Vessels (via 
AIS) 

- smartphone 
 

 
    

Signal of 
opportunity 

IPS 
 

    
 

eLoran 
 

 
    

AIS base 
stations  

  
 

 
 

System-level 
crowdsourcing 

CORS netwok 
      

Computer 
vision 

SLAM  
 

    
 

Table 2.2: opportunistic data sources, detailing their contribution to maritime navigation in terms of support at levels (user 
and/or system) and across different operational stages 

In more detail, the opportunistic data sources can be beneficial for the user and system level in 

enhancing maritime navigation and operational efficiency. At the user level, the key benefits of 

the opportunistic data sources are that:  

• By leveraging these data sources, it might be feasible to meet future requirements, particularly 

those pertinent to the port phase. To the best of our knowledge, the Dual Frequency Multi-

Constellation (DFMC) GNSS and/or dead reckoning cannot achieve the required level of 

future performance in the port phase (1m Horizontal accuracy (95%), 2.5 m Horizontal alarm 

limit, availability >99.8%, continuity >99.97 per 15 minutes, and an integrity risk of 10^(-5)). 

This underscores the potential need for employing GNSS alternatives besides GNSS to meet 

these performance criteria. During the port stage, opportunistic data sources should provide 

a positioning accuracy of 1 meter with an integrity risk of 10−5 when the system operates 

independently. When integrating with GNSS, the candidate technologies should be evaluated 

using either real data or simulations.  

• The opportunistic data sources can contribute to reducing alarm limits, thereby enhancing 

maritime navigation operations. Put differently, in the case of achieving performance 

requirements in all operational phases, improving system performance can still lead to a 

reduction in the alarm limit in the future. This results in a decrease in the minimum required 

distance between vessels, leading to improved operations, especially in high-density regions 

(e.g., port phase). 

• The opportunistic data sources can be one of the robust layers of defence against various 

threats such as jamming and spoofing.  
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In addition to the advantages at the user level, opportunistic data sources offer numerous benefits 

for system-level integrity monitoring. The following characterise some of the key advantages:  

• Improving error characterisation and overbounding. By increasing the amount of data 

utilised at the system level, the system can more accurately characterise measurement 

errors. The impact of Gaussian assumption at the system level and user level is significant, 

as discussed in Section 2.2.3. Thus, there is a need to utilise Gaussian alternatives to 

achieve a more precise characterisation of measurement errors, ultimately enhancing 

system performance. This improvement can reflect on user-level performance and support 

the system in achieving the required performance level, especially at the porting level. In 

addition, as noted earlier, this enhancement can reduce the alarm limit in the future, 

leading to improved operations. 

• Enhancing the FDE process. The additional number of opportunistic data increases the 

redundancy which leads to a more robust FDE process. This will be reflected in all user-

level outputs including positioning accuracy and protection level, then it is indirectly liked 

also with availability and continuity.  

2.3 Selecting opportunistic approaches 

The selection of opportunistic approaches is based on the current limitations of INSPIRe, which 

may not achieve future performance in the port phase. By reviewing the advantages and 

limitations of opportunistic approaches, summarised in detail in Table 2.3, two approaches have 

been selected in terms of priority for INSPIRe: user-level crowdsourcing utilising information from 

nearby vessels, and system-level crowdsourcing based on utilising the CORS network to improve 

error characterisation. The former can support system performance in all operation phases, and 

the latter can improve the FDE process and enhance error characterisation and overbounding, 

which in turn can enhance system performance at the user level across all phases. 

Meanwhile, IPS can support the system within a limited range in the port phase and requires 

infrastructure. eLoran was switched off in Europe and AIS shore station-based systems integrity 

monitoring is not well explored, and the level of accuracy of these two technologies cannot meet 

the requirements in the port phase. Computer vision faces challenges in finding features to match 

in the ocean and coastal phases, with limited features in the port phase, and Integrity monitoring 

for SLAM is still not well explored. 
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Table 2.3: advantages and limitations of opportunistic approaches 

Opportunistic approach Limitations Advantages 

User-level 
crowdsourcing 

Vessels 

• As of the current state of knowledge, no 
integrity monitoring algorithm has been 
developed yet. 

• The system's availability is a function of the 
number of nearby vessels. 

• To ensure computational safety, a protection 
level needs to be incorporated into the AIS 
messages. 

• Failure modes and modes are not well 
explored for the range sensors (e.g., Radar or 
LiDAR), as well as the overbounding of range 
measurements. 

• Based on IMO (2015), AIS 
information should include the 
ship's position with an accuracy 
indication and integrity status.  

• The range sensors exist in the 
majority of the vessels.  

• The performance of this approach 
is a function of the vessel's 
density, thus, this approach can 
provide higher performance in the 
port phase 

Smartphone 

• Provides a positioning solution with a low 
level of accuracy. 

• Data transformation between smartphones 
and vessels is a complex process. 

• There is a significant impact from signal 
blockage due to the user's body and the 
surrounding complex environment. 

• The protection level is not computed on the 
smartphone using the best of our technology, 
which is necessary to determine the vessel's 
protection level. 

• Advanced error modelling is not applied to 
smartphones 

• the system availability is a function of nearby 
smartphone numbers  

• There is a vast number of 
smartphone users. 

Signal of 
opportunity 

IPS (e.g 
WiFi, 

Bluetooth 
and UWB) 

• Required infrastructure 

• Can be utilised within a limited range at the 
port level only 

• There is a weak understanding of indoor 
positioning integrity monitoring, failure modes, 
and models to date 

• Can provide a high level of 
accuracy. Of the IPS, UWB can 
provide a cm-dm accuracy level, 
and AOA Bluetooth can provide 1-
3 meters of accuracy 
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• Implementation of IPS in real-time 
applications remains complex 

• The majority of IPS systems are highly 
impacted by metal, especially UWB 

• The cost of some IPS 
infrastructure such as Bluetooth is 
not expensive  

 

eLoran 

•  The system was switched off in Europe in 
2015, and only one station works in UK, which 
is not sufficient for positioning.   

• Integrity monitoring for eLoran is not well 
explored, including developing an integrity 
layer at the user level and understanding the 
failure mode and model. 

• Required system-level integrity monitoring to 
ensure signal quality. 

•  

• Can cover a wider range 
compared with IPS. 

• Requires expansive infrastructure. 
 

AIS base 
stations 

• Integrity monitoring for AIS shore station-
based integrity is not well-explored  

• Required system-level integrity monitoring to 
ensure the signal's quality 
 

• The AIS shore stations exist in the 
UK and Europe 

   

system-level 
crowdsourcing 

CORS 
network 

• A limited number of CORS networks in the 
UK provide 1Hz data, required for integrity 
monitoring. 

• Increasing the number of utilised CORS 
networks at the system level will increase 
computational costs. 

• Can improve the FDE process at 
the system level. 

• Can enhance error 
characterisation and overbounding 
at the system level, which can 
improve system performance at 
the user level in all phases 

Computer vision SLAM 

• There are not enough features to match in the 
ocean and coastal phases, and limited 
features in the port phase. 

• Complex Integrity monitoring  

• computationally expensive. 

• Can provide a high level of 
accuracy  
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3. System-level crowdsourcing   

As mentioned in Section 2.2.3, error characterisation is employed across three phases at the user 

level in positioning/integrity algorithms, and at two phases within system-level integrity monitoring. 

At the system level, errors are characterised by PDFs, which are transmitted to users after 

overbounding the distributions. In addition, error characterisation is used in the FDE test statistic 

process at the system level. At the user level, error characterisation is utilised in measurement 

error characterisation, position error characterisation, and residual characterisation. This 

characterisation impacts all outputs of positioning algorithms, including estimated position, 

position uncertainty, and protection level. The development of GNSS integrity widely assumes 

that GNSS error follows a Gaussian distribution; however, this is not always the case, especially 

at the tail (Panagiotakopoulos et al., 2014). 

This section evaluates error characterisation at the system level using Gaussian, Generalised-t, 

GEV, Logistic, Laplace, and Cauchy distributions. These distributions were selected based on the 

findings of Alghananim and Ochieng (2023), following evaluation of 31 distributions for their 

capability to model the distribution of GNSS measurement error. 

The distributions in this report have been evaluated in three main aspects: fitting (overall and tail), 

impact on system availability, and bounding, taking computational complexity into account, as 

shown in Figure 3.1 The assessments utilised to evaluate these dimensions include the 

Kolmogorov-Smirnov (KS) test (Kolmogorov,1933), graphical assessment, and availability 

assessment. The KS test is used to assess the distribution's overall fitting, while the graphical 

assessment used is to evaluate the fitting (tail and core), and overbounding. The availability 

assessment is used to evaluate the impact on system availability.  

 

Figure 3.1: error characterisation evaluation aspects 
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These aspects significantly influence system performance. Overall fitting is correlated with system 

reliability, and tail fitting is crucial for mapping extreme events which is significant for integrity. The 

ultimate goal of error characterisation is to strike a balance between these qualities, ensuring 

safety while maintaining system availability and reliability. Table 3.1 shows the error 

characterisation aspects, impact on the system, and assessments.  

Aspect Impact on the system 

Assessment 

Graphical 
assessment 

Kolmogorov-
Smirnov (KS) 

Availability 
assessment 

Fitting 

Overall 
fitting 

System reliability 
  

 

Tail fitting Mapping extreme events 
 

  

Bounding Safety/integrity  
 

  

impact on system 
availability 

availability   
 

Table 3.1: error characterisation aspects, impact on the system, and assessments 

The system-level error characterisation encompasses five stages: data collection, distribution 

selection, distribution estimation, goodness of fit assessments, and evaluation, as shown in Figure 

(3.2). In the first stage, data have been collected from the OS Net CORS network, discussed in 

Section 3.1. In the second stage, six distributions have been tested: Gaussian, Generalised-t, 

GEV, Logistic, Laplace, and Cauchy. The Probability Distribution Function (PDF), Cumulative 

Distribution Function (CDF), and their parameters for these distributions are presented in Section 

3.2. Distribution estimation using maximum likelihood is discussed in Section 3.3. The fitting 

assessment results are summarised in Section 3.4, and Section 3.5 provides a discussion that 

includes evaluating the tested distributions. 

 

Figure 3.2: system-level error characterisation stages and high level WP8.1-WP8.4 activates  
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3.1 Data source   

The data have been collected and proceeded from 20 OS stations around the UK. The data 

include 3 hours of raw data (RINEX) files with 30 seconds epochs. Table (3.2) presents data 

datasets used in this section.  

Table 3.2:datasets used in this study 

ID StationID_year_dayoftheyear_startingtime_endingtime 

1 AMER_ 2023_220_18_21 

2 ANLX_ 2023_255_21_00 

3 ATTL_ 2023_215_00_03 

4 BUCI_ 2023_252_09_12 

5 CAMO_ 2023_228_14_17 

6 CARL_ 2023_218_10_13 

7 CLAW_ 2023_230_12_15 

8 FAUG_ 2023_232_07_10 

9 GLAS _2023_242_04_07 

10 HOLY _2023_210_06_09 

11 LEED_ 2023_240_06_09 

12 LEEK_ 2023_212_17_20 

13 MANR _2023_238_08_11 

14 NCAS _2023_250_0_3 

15 SABS _2023_245_12_15 

16 SHOE _2023_225_06_09 

17 SOTN _2023_235_00_03 

18 SWAN _2023_247_15_18 

19 SWAS _2023_248_18_21 

20 THUS _2023_222_15_18 

 

3.2 Error distributions  

As noted earlier, we have employed six distributions in this report: Gaussian, Generalised-t, GEV, 

Logistic, Laplace, and Cauchy. The following are the key characteristics of these distributions:  

• The Gaussian distribution, characterised by its symmetry and two parameters (mean for 

location and standard deviation for scale), is used across various fields, due to its simplicity 

in both computation and uncertainty propagation.  

• The generalised-t distribution, or t location-scale distribution, is a heavy-tailed distribution 

defined by three parameters: location, scale, and degrees of freedom. This distribution is 

particularly advantageous for modelling small sample sizes. 

• GEV distribution, which belongs to the scale-location distribution family and originates 

from extreme value theory, is an asymmetric three-parameter distribution that maps 

extreme events and their deviation from the sample median.  
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• The Logistic distribution, commonly used in growth models and logistic regression, is a 

two-parameter function defined by its location and scale parameters. 

• The Laplace distribution, or double-exponential distribution, is a symmetric distribution 

with widespread applications in engineering, finance, inventory management, quality 

control, astronomy, biology, and environmental sciences (Kotz et al. 2001). 

• Cauchy distribution, also known as the Lorentz distribution, is a symmetric distribution with 

very heavy tails, making it an excellent tool for outlier detection. 

Table (3.3) presents the PDF, CDF, and parameters for each of the six distributions.  

 

3.3 Distribution estimation  

In this report, we utilise maximum likelihood  - a robust and systematic estimation method - to 

determine distributions. ML determines the parameters of the PDF, denoted as 

𝐿𝑛(𝜃|𝑥1 … , 𝑥𝑛) =  ∏ 𝑓(𝜃|𝑥𝑖)

𝑛

𝑖=1

                                                                                                                             (3.1) 

where: (𝑥1, … . , 𝑥𝑛) is the data sample,  𝑓(𝑥|𝜃) is the PDF  with parameters 𝜃, and 𝑛 is the sample 

size.  

The essence of ML estimation lies in maximising the log-likelihood function, which is a 

transformation of the likelihood function for simplification. The log-likelihood function is expressed 

as: 

ℓ(𝜃; 𝑥𝑖) = 𝐼𝑛(𝐿(𝜃, 𝑥𝑖))                                                                                                                                        (3.2) 

To estimate the parameter, the derivative of the log-likelihood function concerning 𝜃 is set to zero, 

as the objective is its maximisation:  

𝜕ℓ

𝜕𝜃𝑖
= 0                                                                                                                                                                    (3.3) 

Then an iterative numerical procedure (e.g., Newton-Raphson) can be employed to solve the 

equations returned from the partial derivative of the log-likelihood function. 
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Table 3.3: PDF, CDF, and parameters for distributions used in this study 

Distribution 
Symmetric/ 
asymmetri

c 
Parameters PDF CDF 

Gaussian symmetric 

- location (𝜇) 

- Standard deviation 
(𝜎) 

1

𝜎 √2𝜋
 𝑒

−
1
2

 (
𝑥−𝜇

𝜎
)

2

 
1

𝜎 √2𝜋
 ∫ 𝑒

−
1
2

 (
𝑡−𝜇

𝜎
)

2

 𝑑𝑡
𝑥

−∞ 

 

Generalised-

t 
symmetric 

- Location (𝜇𝑡) 

- Scale (𝜎𝑡) 

- Degree of freedom 
(𝑣). 

Γ (
𝑣 + 1

2 )

𝜎 √𝑣𝜋 Γ (
𝑣
2)

  [
𝑣 + (

𝑥𝑖 − 𝜇
𝜎𝑡

)
2

𝑣
]

−
𝑣+1 

2

 
Γ (

𝑣 + 1
2 )

𝜎 √𝑣𝜋 Γ (
𝑣
2)

∫   [
𝑣 + (

𝑡 − 𝜇𝑡
𝜎𝑡

)
2

𝑣
]

−
𝑣+1 

2

𝑑𝑡
𝑥

−∞ 

 

Generalised 

Extreme 

Value (GEV) 
asymmetric 

- Shape (𝜉), 
- location (μ),  
- Scale (σ) 

 

𝐹(𝑥) = 𝑒−𝑄(𝑥) 

𝑄(𝑥) =  {
(1 + 𝜉 (

𝑥 − 𝜇

𝜎
))

−1/𝜉

       𝜉 ≠ 0

𝑒
(−

𝑥−𝜇
𝜎

)
                                𝜉 = 0

} 
𝑓(𝑥) =

1

𝜎
 𝑄(𝑥)𝜉+1 𝑒−𝑄(𝑥) 

Logistic symmetric 
- Location (𝜇) 
- Scale (𝑠). 

𝑒
(−

𝑥−𝜇
𝑠

)

𝑠 (1 +  𝑒
(−

𝑥−𝜇
𝑠

)
)

2 
1

1 + 𝑒
(−

𝑥−𝜇
𝑠

)
 

Laplace symmetric 
- Location (μ ), 
- Scale (b ) 𝑓(𝑥) =  

1

2𝑏
   𝑒−

|𝑥 − 𝜇|
𝑏  

1

2
   [1 +  𝑠𝑖𝑔𝑛(𝑥 −  𝜇) ∗  (1 −  𝑒−

|𝑥 − 𝜇|
𝑏 )] 

Cauchy symmetric 
- Location (𝑥0) 

- Scale (γ) 

1

𝜋
  

𝛾

(𝑥 −  𝑥0)2  +  𝛾2
 (1/2)  +  

1

𝜋
 𝑎𝑡𝑎𝑛(

(𝑥 −  𝑥0)

𝛾
) 
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3.4 Goodness-of-fit assessments 

As highlighted earlier, the goodness-of-fit assessments concentrate on four key areas: overall fit, 

core fitting, the impact on system availability, and overbounding. The Goodness-of-fit assessment 

methods are systematically divided into two categories: Graphical assessment and hypothesis 

tests. The graphical method evaluates the distribution using the PDF, CDF, and empirical CDF 

(eCDF). This assessment aims to test three aspects: overall fit, core fit, and overbounding. 

The KS test is the hypothesis testing approach used in this report to assess the overall fitting. The 

test examines if a data sample originates from a population following a specified distribution. It is 

based on computing the largest difference between the empirical distribution and the CDF of the 

proposed distribution. The formula for the KS test is as follows: 

𝐷 =  max
𝑛

(𝐷1, 𝐷2)                                                                                                                                                     (3.4) 

𝐷1 = max
𝑛

(𝐹(𝑥𝐼) −  𝑒𝐶𝐷𝐹(𝑥𝐼))                                                                                                                            (3.5) 

𝐷2 = max
𝑛

(𝑒𝐶𝐷𝐹(𝑥𝐼) −  𝐹(𝑥𝐼))                                                                                                                           (3.6) 

where: 𝐹(𝑥) is the CDF hypothesized distribution, eCDF is the empirical cumulative distribution 

function. 

The hypothesis that the error sample follows a hypothesized error distribution is given by:   

- Null-Hypothesis 𝐻0: the error sample (𝑥1, … , 𝑥𝑛) follows a hypothesized error distribution 

𝜒2 >  𝜒1−𝛼,𝑘−𝑠 
2                                                                                                                                                          (3.7)  

- Alternate Hypothesis 𝐻1: the error sample (𝑥1, … , 𝑥𝑛) does not follow a hypothesized error 

distribution 

𝜒2 ≥  𝜒1−𝛼,𝑘−𝑐 
2                                                                                                                                                           (3.8) 

In addition to these techniques, this report also includes an availability assessment as a heuristic 

evaluation, to measure the impact of the distribution on the system availability by calculating the 

Confidence Interval (CI) for various confidence levels (CL), discussed in more detail in Section 

(3.5.3). 

3.5 Assessments Results  

3.5.1 Kolmogorov-Smirnov test results 

The KS test results show that the pseudorange error does not follow any of the six distributions 

in all 20 datasets and their combination, at 5% significance level. However, the test value, 

computed from equations (3.4), has been used to evaluate the distribution's overall fitting. Table 

(3.4) summarises the KS test statistic values for the six distributions within the 20 datasets. Table 

(3.5) and Figure (3.3) displays the number of times with which each distribution ranked as the 

best, second best, and third best in terms of dataset fitting based on the KS test results 
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The KS test values show a mixed result in terms of fitting the measurement error. Generally, the 

results suggest that among the tested distributions, the Logistic distribution provides the best 

overall fitting. Based in KS test values, the Logistic distribution shows the best performance 

between the tested distribution in fitting 12 datasets, and second best for 2 databases, and the 

third best for 5 databases. Put differently, Logistic was one of the best three distributions in 19 

datasets (out of 20). In addition, the Logistic was the best in the combined dataset. 

The Cauchy and Laplace distribution ranked as the second-best and third-best distribution, 

following the Logistic distribution in terms of overall fitting. Specifically, the Laplace distribution 

showed the second-best distribution in fitting the combination dataset and the Cauchy distribution 

ranked as the third-best, while the Cauchy distribution showed the best fitting for 4 datasets, 

second-best for 3 datasets, and third-best for one dataset, while the Laplace distribution provides 

the best fit for three datasets. Notably, neither the Gaussian nor the generalised t distribution 

ranked as the best distribution in fitting any of the datasets.  

 

Table 3.4: KS test statistic values for the six distributions within the 20 datasets 

Dataset ID Gaussian Generalised-t GEV Logistic Cauchy Laplace 

1 0.185 0.228 0.354 0.181 0.201 0.219 

2 0.156 0.244 0.170 0.156 0.171 0.174 

3 0.178 0.310 0.187 0.172 0.201 0.211 

4 0.179 0.361 0.196 0.165 0.196 0.214 

5 0.231 0.300 0.210 0.205 0.199 0.193 

6 0.269 0.298 0.421 0.172 0.170 0.175 

7 0.226 0.226 0.227 0.239 0.226 0.223 

8 0.182 0.366 0.181 0.169 0.201 0.208 

9 0.349 0.354 0.214 0.196 0.173 0.194 

10 0.163 0.167 0.155 0.169 0.191 0.239 

11 0.176 0.365 0.184 0.174 0.218 0.251 

12 0.221 0.317 0.210 0.206 0.232 0.234 

13 0.216 0.275 0.310 0.178 0.205 0.212 

14 0.188 0.266 0.168 0.166 0.196 0.213 

15 0.511 0.208 0.574 0.501 0.176 0.976 

16 0.180 0.402 0.159 0.159 0.213 0.255 

17 0.191 0.324 0.187 0.183 0.179 0.203 

18 0.180 0.184 0.197 0.182 0.183 0.178 

19 0.219 0.207 0.389 0.184 0.206 0.225 

20 0.184 0.298 0.183 0.183 0.185 0.199 

Combined  0.219 0.282 0.424 0.174 0.180 0.177 

 

Table 3.5: number of times with which each distribution ranked as the best, second best, and third best in terms of dataset 
fitting based on the KS test results 
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Gaussian Generalised-t GEV LOGISTIC CAUCHY LAPLACE 

Best 0 0 1 12 4 3 

second 7 2 5 2 3 1 

third 6 2 4 5 1 2 

 

 

Figure 3.3: number of times with which each distribution ranked as the best, second best, and third best in terms of dataset 
fitting based on the KS test results 

The mixed results overall suggest that no single distribution can accurately fit measurement errors 

in all cases. This highlights the potential for implementing adaptive characterisation based on an 

understanding of quality indicators and other factors in real-time operations. Generally, the best 

distribution in terms of fitting datasets using KS test values is the Logistic distribution, followed by 

Cauchy, and Laplace.  

3.5.2 Graphical results 

As safety is the first concern in mission-critical applications, overall fitting is not sufficient to 

evaluate the distributions. Consequently, this section incorporates graphical assessments to 

evaluate distribution bounding and tail fitting. The overall fitting will be re-evaluated and compared 

with the results of the KS test, since the KS test has limitations in precisely assessing overall 

fitting, as it is based on the maximum difference between the CDF and eCDF. 

Figure (3.4-3.7) shows a key result of the graphical assessment for 5 datasets. The appendix 

presents the results of the rest of the database (database 6-20). Figure (3.8) presents the 

graphical assessment of the combined dataset. The results show that logistic, Cauchy, and 

Laplace showed the best overall fitting, confirming KS test results. The Generalised t distribution 

showed an extremely good fitting for the distribution core. 

The GEV distribution showed the best performance in fitting for the tails and mapping the extreme 

events, and provides the best bound in 19 datasets out of 20, followed by Gaussian and Logistic 

distributions. This suggests using these distributions for mission-critical applications, considering 

the need to apply overbounding.  
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Figure 3.4: pseudorange error characterisation using the six distributions in PDF and CDF domain, dataset 1 
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Figure 3.5: pseudorange error characterisation using the six distributions in PDF and CDF domain, dataset 2 
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Figure 3.6: pseudorange error characterisation using the six distributions in PDF and CDF domain, dataset 3 
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Figure 3.7: pseudorange error characterisation using the six distributions in PDF and CDF domain, dataset 4 
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Figure 3.8: pseudorange error characterisation using the six distributions in PDF and CDF domain, combined datasets 

 

3.5.3 Availability results 

As noted earlier, the availability test aims to assess the impact of the distributions on system 

availability. The availability test involves computing the confidence interval at a confidence level 

that aligns with the integrity risk requirements. In this section, the test is applied for integrity risks 

of 10−4, 10−5, 10−6, 𝑎𝑛𝑑 10−7. Therefore, it entails computing the confidence interval for 

1 − 10−4, 1 − 10−5, 1 − 10−6, 𝑎𝑛𝑑 1 − 10−7. However, while this assessment may not establish a 

precise link between availability and distribution, it can reliably exclude certain distributions that 

significantly reduce system availability. 
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Table (3.6) presents the results of the availability assessment for the 20 datasets and the 

combined dataset. Across all tested integrity risk levels and datasets, the findings indicate that 

the implementation of the Generalised t and Cauchy distributions can reduce system availability 

to the point where the system almost fails to operate in all cases. This outcome is a result of the 

heavy-tail phenomena associated with these two distributions. Consequently, Generalised t and 

Cauchy are not considered reliable for characterising GNSS measurement error. 

Focusing on the integrity risk of  10−5 to 10−4 level (as required in INSPIRe 10−5 per 3 hours), the 

results for the remaining distributions (Gaussian, Logistic, Laplace, and GEV) show that Gaussian 

and Logistic distributions have the lowest confidence intervals among the four, followed by 

Laplace, while GEV has the highest. This outcome aligns with the findings of the graphical 

assessment, as GEV provides better bounds and mappings of extreme events. Since 

overbounding is the first concern in mission-critical applications and the protection level is 

computed form an overbounding distribution, these results do not indicate a direct link between 

these four distributions and system availability. To accurately project the distribution to the 

protection level, a comparison of the confidence levels should be made for overbounded-

Gaussian, overbounded-Logistic, overbounded-Laplace, and overbounded-GEV. 

In conclusion, the results indicate that Generalised t and Cauchy are not reliable for characterising 

GNSS measurement errors. The other distributions should be re-evaluated in the future, taking 

into account overbounding. This is discussed in Section 5.1. 

Table 3.6: availability assessment results in meters  for the 20 datasets and the combined one 

  Integrity risk 
  10−4 10−5 10−6 10−7 

Gaussian 

Average  6 7 8 8 

min 3 3 3 4 

max 28 32 35 38 

GEV 

Average 9 10 12 13 

min 3 3 3 3 

max 34 38 43 57 

Logistic 

Average 6 7 8 10 

min 3 4 5 5 

max 17 21 25 29 

Laplace 

Average 7 8 9 8 

min 3 4 4 4 

max 19 23 25 26 

Generalised t 

Average 7.44543× 1039 6.24816E× 1051 5.24645× 1063 4.40575× 1075 

min 50 154 473 1459 

max 1.48784E× 1041 1.24946× 1053 1.04926× 1065 8.81147× 1076 

Cauchy 

Average 2170 44677 53180 131692 

min 380 1235 2522 3410 

max 4065 262563 385935 1915867 
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3.6 Summary and Conclusion   

Error characterisation plays a crucial role in positioning and integrity monitoring algorithms, 

impacting the quality of all outputs, including protection levels and uncertainties. GNSS 

pseudorange error at the system level has widely been assumed to follow a Gaussian distribution. 

Hoewever, this is not always the case as the results presented in this section demonstrate.  

Five distributions, including Generalised-t, GEV, Logistic, Laplace, and Cauchy, have been tested 

against the Gaussian distribution. These distributions were evaluated in three main aspects: fitting 

(overall and tail), their impact on system availability, and overbounding. The primary objective of 

error characterisation is to strike a balance between ensuring safety while maintaining system 

availability and reliability. To achieve this, three types of tests were applied in this section: KS 

tests, graphical assessment, and availability assessment. 

The availability assessments revealed that the Generalised-t and Cauchy distributions are not 

reliable choices for error characterisation. Among the remaining distributions (Gaussian, GEV, 

Logistic, and Laplace), the results indicated that the GEV distribution offers the best performance 

in bounding and mapping extreme events. When considering fitting results, Logistic and Laplace 

distributions generally outperformed GEV and Gaussian distributions in most datasets. 

Considering computational complexity of real-time applications, the GEV distribution is more 

complex than the other distributions. Therefore, we suggest utilising Logistic, Laplace, and 

Gaussian distributions based on current computational capabilities. Additionally, we recommend 

future research to simplify the computational complexity associated with the GEV distribution, 

discussed in more detail in Section 5.1. 

Highlighting the mixed results in terms of fitting, this suggests the potential development of an 

adaptive error characterisation approach in the future. This can be achieved by using quality 

indicators to dynamically select one of the four distributions (Gaussian, GEV, Logistic, and 

Laplace) in real-time. Finally, in cases where an adaptive error characterisation method has not 

been developed, we recommend using the Logistic distribution based on the findings of this 

report, with consideration of the need for overbouding.  
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4. User-level Crowdsourcing   

4.1 Overview  

As mentioned in Section 2.2.1, user-level crowd-sourced positioning is based on using nearby 

vessel information to enhance the positioning and integrity algorithms in the maritime sector. This 

is especially relevant because the current GNSS cannot provide the required level of 

performance, particularly at the port. Furthermore, the proposed user crowd-sourced positioning 

concept in this report can also be expanded to include other sectors where integrity is a critical 

performance metric. 

The fundamental concept of crowd-sourced positioning is based on leveraging nearby vessel 

positioning and integrity information, which can be transmitted via the Automatic Identification 

System (AIS). In addition, it also encompasses range measurements that can be computed using 

Radar and/or Lidar technology. According to the International Maritime Organization (IMO, 2015), 

AIS information should include the ship's position with an accuracy indication and integrity status, 

as discussed in Section 4.2.  

In simpler terms, this layer contributes to system safety by establishing connections between all 

nearby vessel positions, moving beyond the traditional approach of solely linking vessel positions 

with satellites, as shown in Figure (4.1). Furthermore, user-level crowd-sourced positioning can 

enhance the system's situational awareness due to its foundation in relative positioning modes, 

and this layer can be extended to include tracking and predicting the locations of nearby vessels. 

In addition, the adaptive relative positioning utilised in this layer provides a basis for further 

developments of anti-spoofing and anti-jamming techniques, ensuring a more secure and reliable 

system. 

This approach is introduced as an additional layer to the two-integrity monitoring layers in 

INSPIRe. In real-time operation, the system level integrity sends to the user the required integrity 

information to ensure safe operation. Then at the user-level, the GNSS devices receive this 

information to compute the position and protection level. The proposed layer then is based on 

transferring positioning information between the vessels to compute the protection level within a 

third layer. Figure (4.2) presents the functional architecture of these three layers. 

 

Figure 4.1: The left side illustrates the traditional approach of linking vessel positions to satellites, while the right side 
demonstrates the contribution of crowd-sourced positioning in establishing connections between the positions of all nearby 

vessels in addition to satellites
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Figure 4.2: functional architecture of these three layers, the system level architecture developed within WP7 by (Niemann, 2023)
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The developed mathematical model, discussed in Section 4.3, has been tested via a simulator 

developed by Imperial College for this purpose. The simulator is designed to handle various 

configuration parameters (e.g. number of nearby vessels, geometry, range sensors) to 

demonstrate the developed approach in various operation conditions, this will be discussed in 

detail in Section 4.4. The investigation of user-level crowdsourcing integrity performance based 

on LiDAR and Radar range sensors is summarised in Section 4.5. 

4.2 Automatic Identification System 

The IMO, as per its 2015 guidelines (IMO,2015), specifies the mandatory and optional elements 

of the AIS, as follows:  

• Mandatory Information 

▪ Ship's Position: The exact location of the ship, accompanied by an indication of the 

accuracy of this data and the integrity status of the positioning system. 

▪ Time in UTC: The Coordinated Universal Time at which the other data parameters are 

valid. 

▪ Course Over Ground: The direction in which the ship is moving over the bottom. 

▪ Speed Over Ground: The ship's speed is measured relative to the ground. 

▪ Heading: The direction towards which the ship is pointing. 

▪ Navigational Status: This includes various statuses like Not Under Command, at anchor, 

etc., and requires manual input. 

▪ Rate of Turn: This is provided where available, indicating how fast the ship is turning. 

▪ IMO Number (where available): A unique reference for ships and for registered ship 

owners and management companies. 

▪ Call Sign & Name: The ship’s radio call sign and its name. 

▪ Length and Beam: The dimensions of the ship. 

▪ Type of Ship: The specific type or classification of the ship. 

▪ Location of Position-Fixing Antenna: This should be specified in relation to the ship’s 

structure (aft of bow and port or starboard of centerline). 

▪ Ship’s Draught: The vertical distance between the waterline and the bottom of the hull. 

▪ Hazardous Cargo (type): Information on any hazardous cargo on board. 

▪ Destination and ETA: The ship’s destination and estimated time of arrival, are provided 

at the master’s discretion. 

• Optional Information 

▪ Angle of Heel: The degree to which the ship is tilted to one side, provided where 

available. 

▪ Pitch and Roll: The up or down and side-to-side tilting of the ship, respectively, provided 

where available. 

▪ Route Plan: Information about the planned route of the ship. 
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4.3 Mathematical model 

The functional model utilised in the crowd-sourced positioning layer is based on trilateration, a 

positioning fixing solution that leverages the coordinates of nearby vessels and measured ranges. 

The mathematical representation of the function models is given as follows: 

𝑟 =   √(𝑥𝑛 −  𝑥)2  + (𝑦𝑛 −  𝑦)2  + (𝑧𝑛 −  𝑧)2 +  𝛿. 𝑐                                                                                   (4.1) 

where: 𝑟  is the measured range to the nearby vessel, (𝑥, 𝑦, 𝑧) is the coordinates of the unknown 

vessel, (𝑥𝑛, 𝑦𝑛, 𝑧𝑛) are the coordinates of the nearby vessel, 𝑐 is the speed of light, and 𝛿 is a free 

parameter representing the clock error. The minimum number of required nearby vessels is four. 

The linearised form of 4.1 is given by: 

𝑓(𝑥 + ∆𝑥) ≈ 𝑓(𝑥) + 𝐽∆𝑥                                                                                                                                       (4.2) 

In this context, the weighted nonlinear Ordinary Least Squares (OLS) solution is given by: 

𝑥 = 𝑥 + ∆𝑥                                                                                                                                                                 (4.3) 

∆𝑥 = (𝐽𝑡𝑊𝐽)−1𝐽𝑡𝑊𝑏                                                                                                                                               (4.4) 

𝑏 = 𝑓(𝑥0) − 𝐵𝑊𝑏                                                                                                                                                    (4.5) 

𝑊 = 𝑄𝜄
−1                                                                                                                                                                     (4.6) 

where:𝑥 is the updated estimate of the parameters after applying the correction ∆𝑥, 𝐽 is the 

Jacobian matrix, 𝑊 is the weight matrix, 𝐵 is the observation parameters, and 𝑄𝜄 is the covariance 

matrix of the observations.  

The covariance matrix of the observations (𝑄𝜄) is a diagonal matrix comprised of the variances of 

the range measurements. These variances can be estimated through a combination of the sensor 

range variance ( 𝜎𝑖𝑟𝑎𝑛𝑔𝑒 𝑠𝑒𝑛𝑠𝑜𝑟
2 ) and the range error caused by the positional errors of nearby 

vessels, as shown in Figure (4.3). This can be expressed as: 

𝜎𝑖𝑟𝑎𝑛𝑔𝑒
2 = 𝜎𝑖𝑟𝑎𝑛𝑔𝑒 𝑠𝑒𝑛𝑠𝑜𝑟

2 +  𝜎𝑖𝑟𝑎𝑛𝑔𝑒 𝐺𝑁𝑆𝑆
2                                                                                                             (4.7) 

 

Figure 4.3: the range error component  
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The range error caused form nearby vessel GNSS positioning error can be estimated/propagated 

as:  

𝜎𝑖 𝑔𝑝𝑠
2 = (

𝜕𝑟

𝜕𝑥
 𝜎𝑥𝑖

)
2

+  (
𝜕𝑟

𝜕𝑦
 𝜎𝑦𝑖

)
2

+ (
𝜕𝑟

𝜕𝑧
 𝜎𝑧𝑖

)
2

                                                                                                 (4.8) 

Following the position solution in equations (4.3), the Mean Squared Error (MSE) and covariance 

matrix of the estimated parameters( 𝑄𝑥) are given by:  

𝑀𝑆𝐸 =  
𝐵′ ∗ (𝑊 −  𝑊 ∗ 𝐽 ∗ (𝐽′ ∗ 𝑊 ∗ 𝐽)−1 ∗ 𝐽′ ∗ 𝑊) ∗ 𝐵

𝑚 − 𝑛
                                                                             (4.9) 

𝑄𝑥  =  (𝐽′ ∗ 𝑊 ∗ 𝐽)−1 ∗ 𝑀𝑆𝐸                                                                                                                                (4.10) 

To transfer the covariance matrix of the estimated parameters 𝑄𝑥−𝑊𝐺𝑆84  from Earth-Centered 

Earth-fixed (ECEF) coordinates to WGS84, rotation matrix (𝑅) can be used as follows:  

𝑄𝑥−𝑊𝐺𝑆84 = 𝑅 ×  𝑄𝑥𝑖𝑗 𝑓𝑜𝑟 𝑖,𝑗=1,2,3
 × 𝑅′                                                                                                              (4.11) 

where: 𝑄𝑥𝑖𝑗 𝑓𝑜𝑟 𝑖,𝑗=1,2,3
 represents the subset of the first three columns and rows of 𝑄𝑥, 

encompassing the 3D positioning errors.  

For FDE, employing the test statistics utilised for the all-in-view solution in GNSS (Blanch et 

al.,2012), the chi-square test statistic  (𝜒2)for the all-in-view set and the test threshold (𝑇𝜒2  ) can 

be computed using the probability of false alarm (𝑃𝑓𝑎) as follows: 

𝜒2 = 𝑦𝑡(𝐵 ′ ∗ (𝑊 −  𝑊 ∗ 𝐽 ∗ (𝐽′ ∗ 𝑊 ∗ 𝐽)−1 ∗ 𝐽′ ∗ 𝑊) ∗ 𝐵)𝑦                                                                      (4.12) 

𝐹(𝑇𝜒2 , 𝑑𝑒𝑔𝑟𝑒𝑒 𝑜𝑓 𝑓𝑟𝑒𝑒𝑑𝑜𝑚) = 1 − 𝑃𝑓𝑎                                                                                                          (4.13) 

Utilising Equations (4.11) and (4.12), a fault is detected when the test statistic (𝜒2) exceeds the 

threshold (𝑇𝜒2). Subsequent to the FDE stage, the Horizontal P rotection Level (𝐻𝑃𝐿 ) can be 

computed as follows: 

𝐻𝑃𝐿 =  √𝑃𝐿𝑥
2 + 𝑃𝐿𝑦

2                                                                                                                                              (4.14) 

𝑃𝐿𝑥 = 𝑘𝑥 ∗ 𝜎𝑥 + 𝑝1 ∗ 𝑃𝑓𝑎                                                                                                                                      (4.15) 

𝑃𝐿𝑦 = 𝑘𝑦 ∗ 𝜎𝑦 + 𝑝2 ∗ 𝑃𝑓𝑎                                                                                                                                      (4.16) 

𝑝𝑟𝑜𝑗.𝑏𝑛𝑜𝑚𝑖𝑛𝑎𝑙 = [

𝑝1

𝑝2

𝑝3

𝑝4

] =  (𝐽𝑡𝑊𝐽)−1𝐽𝑡𝑊𝑏𝑛𝑜𝑚𝑖𝑎𝑙                                                                                              (4.17) 

Where: 𝑝𝑟𝑜𝑗.𝑏𝑛𝑜𝑚𝑖𝑛𝑎𝑙 is the projection nominal bias (𝑏𝑛𝑜𝑚𝑖𝑎𝑙) in the position domain,  𝑘𝑥  𝑎𝑛𝑑 𝑘𝑦 

are factors that reflect the probability of missed detection and required confidant interval, the latter 

estimated based on required integrity risk. In the equations (4.14,4.15), the 𝜎𝑥 and 𝜎𝑦 should be  
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an overbounded standard devision, which should be computed from an overbounded range 

standard division to esure the safety. Put differently, to compute the protection level, the input 

range parameters should be overbounded in equation (4.7,4.8).   

4.4 Imperial College simulation platform   

As previously mentioned, a simulation platform has been developed to evaluate the developed 

approach. This simulator incorporates a variety of configuration parameters, enabling the 

simulation of diverse scenarios under different operational conditions. The interface of the 

simulator is shown in Figure (4.4). The input configuration parameters and sensor accuracy are: 

• Configuration parameters  

▪ Number of Nearby Vessels 

▪ Minimum and Maximum Distance: The range of distances between the vessel (of unknown 

position) and the nearby vessels. 

▪ Minimum Distance Between Nearby Vessels 

▪ Simulation Reference Locations (Window): Used to centre the simulation around this 

specific point. 

▪ Elevation Range: Refers to the elevation difference between vessels, crucial for enhancing 

the simulation’s reliability. 

▪ Geometry: Includes three options; strong, weak, and random. This is vital for 

understanding the impact of geometry on computations and for accommodating various 

operational scenarios. 

▪ Number of Scenarios: This parameter offers the flexibility to generate any number of 

scenarios and save the results in CSV files, enabling the generation of a million of 

scenarios based on the selected configurations. 

▪ Output Filename: The name of the CSV file containing the results. 

• Sensor’s accuracy:  

▪ Nearby Vessels GNSS Positioning accuracy: These parameters are utilised to estimate 

the positions of nearby vessels and to model the range errors resulting from positional 

errors in the functional model, this includes two parameters:  

- Nearby vessels' GNSS positioning horizontal accuracy 

- Nearby vessels' GNSS positioning vertical accuracy  

▪ Range Sensors Accuracy: Used to simulate the ranges based on sensor accuracy, 

include: 

- Sensor type: consists of two options (Radar IMO standard, customise).  

- Sensor accuracy, in case the customise option is selected, the sensor accuracy 

can be inserted manually  

The outputs of the simulation are summarised as follows: 

• KML files present the simulated vessel's true position and estimated position, opened in 

Google earth. Figure (4.5) presents an example of the KML file output in google earth  

• A web map presents the simulated vessels, as shown in Figure (4.6)  
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• Tables present a key output of the simulation, as shown in Figure(4.7). These tables 

include  

▪ nearby vessels estimated position (in WGS84)   

▪ nearby vessels' true position (in WGS84)  

▪ nearby vessels GNSS horizontal error  

▪ nearby vessels GNSS vertical error  

▪ estimated range  

▪ true range  

▪ range error  

• Estimated position of the unknown vessels in WGS84 and ECEF coordinate system 

• Horizontal and vertical estimated standard division from the least squares. 

• Horizontal and vertical true error  

• Horizontal protection level  

• CVS files include the all results  

 

Figure 4.4: Imperial College simulation platform 

 

 

Figure 4.5: Sample of KML output file from the simulator 



35 

 

 

 

Figure 4.6: Sample of Web map generated from the simulator  

 

 

Figure 4.7: Output table presents a key output of the simulation 
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4.5 User-level crowd-sourcing integrity performance 

This section conducts an in-depth analysis of the developed approach, taking into account a 

variety of configuration parameters and range accuracies. The results derived from the Radar-

based positioning solution are discussed in Section 4.5.1, while the Lidar-based solution is 

discussed in Section 4.5.2. 

4.5.1 Evaluation metrices  

The evaluation matrices are used in this section; protection level, position estimated horizontal 

standard division, and availability – in case n number of nearby vessels achieved. The protection 

level has been computed using equations (4.14-4.16), assuming the 𝑘𝑥and 𝑘𝑦 factors equal by 

6.625, and nominal bias by 10% of the estimated range error. Since the  𝑘  factors reflect the 

probability of missed detection and required confidant interval, it has been assumed by 

multiplication of 4.4167 (factor represents the confidant interval at integrity risk 10−5) and 1.5 

(factor reflects the probability of missed detection). The former factor is content based on the 

integrity risk requirements; the latter is an assumption that can cover the worst-case scenario and 

requires future investigation to precisely estimate this factor. In addition, the 𝑃𝑓𝑎 refers to the 

continuity budget allocated to the chi-square test, which is assumed to be 10−8  , as in the 

development of GNSS ARAIM (Blanch et al.,2012).  

The availability (availabilityn) in this context does not equate to system availability; instead, it 

refers to the crowd-sourcing availability given that the input number of vessels is met. The overall 

crowd-sourcing availability (availabilitycrowd sourcing ) can be calculated using the probabilities of 

having a specific number of vessels 𝑃(𝑛𝑣𝑒𝑠𝑠𝑒𝑙𝑠) and the availability results obtained from 𝑛 number 

of nearby vessels, and can be given by:   

availabilitycrowd sourcing  =  ∑ 𝑃(𝑛𝑣𝑒𝑠𝑠𝑒𝑙𝑠) ×  availabilityn

𝑘−1

𝑛=5

+   𝑃(𝑛𝑣𝑒𝑠𝑠𝑒𝑙𝑠 ≥ 𝑘)  ×   availabilityk                     (4.18) 

where: 𝑘 is the maximum number of vessels that can be utilised within the computation, which 

can be identified based on the maximum required computational power/process.  

When the developed approach in used besides the GNSS, without applying the integration in the 

measurements domain, the total system availability then can be given by: 

availabilitysystem  =  P(crowd sourcing ava. ) + P(GNSS ava. ) − 𝑃(crowd sourcing ava ∩ GNSS ava)         (4.19) 

where: the  P(crowd sourcing ava. ) is the total crowd-sourcing availability, and P(GNSS ava. ) is the 

GNSS availability.  

The above availability models can be applied in various alarm limits/operation phases. In this 

section, the availability (availabilityn) is evaluated for three alarm limits 2.5 m, 5 m, and 25 m. 

Given that the pseudorange GNSS stand-alone approach in INSPIRe cannot meet the required 

alarm limits during the port phase, and considering that the requirements in the maritime sector 

should be achievable, this section assesses a 5-meter alarm limit in addition to the 2.5 meters 

alarm limit (required for port phase) and a 25 alarm limit (required for coastal, ocean, and HEA 

and restricted water phases).  



37 

 

4.5.2 Radar-based crowd-sourcing 

This section evaluates the developed approach using two classes of radar range accuracies: the 

IMO standard, as specified in RESOLUTION MSC.192(79), and the FURUNO X-S-band radar 

models FR-2115-B, 2125-B, 2155-B, 2135S-B. The latter represents radars that offer higher 

accuracy than the standard IMO specification. Table (4.1) presents the radar accuracies used in 

evaluating the proposed approach.  

Table 4.1: radar accuracies used in evaluating the proposed approach. 

Radar Range accuracy 

IMO standard, as specified in 

RESOLUTION MSC.192(79)  

within 30 m or 1% of the range scale, whichever is greater; 

 

FURUNO (X-S-band radar) 
Models:FR-2115-B/2125-B/2155-
B*/2135S-B 

within 15 m or 1% of the range scale, whichever is greater; 

 

 

The investigation was conducted across three scenarios with three cases of nearby vessel 

numbers (5, 6, and 7), simulating 100 'strong geometry' scenarios for each, in a total of 1200 

scenarios. The simulated distances between the vessel and nearby vessels ranged from 100 to 

1000 meters, selected to be within ranges that radar can provide the highest level of accuracy, 

as shown in Figure (4.8).  

Table (4.2) summaries the average positioning standard deviation, protection level, and 

availability at the three-alarm limits for the tested scenarios. Figures (4.9,4.10) present the 

improvement in protection level and position accuracy with increasing the number of nearby 

vessels in each tested scenario. The findings indicate that the radar-based crowdsourcing 

approach ends up with a low level of accuracy and does not significantly enhance maritime 

navigation. The highest availability, achieved using the FURUNO radar with 10 nearby vessels at 

a 25-meter alarm limit, is quite low (lower than 25%). Furthermore, the average protection level 

across all cases was substantially higher than the required ones. 

Table 4.2: summary of the average positioning standard deviation, protection level, and availability at the three-alarm limits 

Lidar 

range 

accuracy 

(95%) 

Number 

of 

vessels 

Integrity  

risk  

 

Position 

standard 

division 

(m) – 

average 

PL (m) – 

average 

Availability – in case n number of 
nearby vessels achieved  

 

Alarm limit 
25 (m) 

Alarm limit 
5 (m) 

Alarm limit 
2.5 (m) 

IMO  5 10−5   14.40 95.37 <15% <5% <4% 

6 10−5    13.65    90.48 <15% <5% <4% 

10 10−5    11.42    75.69 <15% <5% <4% 

FURUNO 5 10−5   8.33  52.61 <25% <5% <4% 

6 10−5     7.52    49.85 <25% <5% <4% 

10 10−5     5.68    37.63 <25% <5% <4% 
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Figure 4.8: Radar Accuracy for the IMO standard radar and accurate X/S radar 

 

Figure 4.9:  average horizontal standard deviation and protection level using IMO standard Radar (accuracy within 30 m or 1% 
of the range scale, whichever is greater) 

 

Figure 4.10: average horizontal standard deviation and protection level using X/S Radar (accuracy within 30 m or 1% of the 
range scale, whichever is greater), distance to  nearby vessels ranges 100-1000 
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4.5.3 LIDAR-based crowd-sourcing 

This section tests the developed approach using Lidar across various accuracy levels (0.5, 1, 1.5, 

and 2m at 95% CL). The initial investigation involves all four accuracy levels across three cases 

of nearby vessel numbers (5, 6, and 7), with 100 strong geometry mode scenarios simulated for 

each case, in a total of 1200 cases. The simulated distance between the vessel and nearby 

vessels ranged from 100 to 1000m.  

Table (4.3) provides a summary of the average positioning standard deviation, protection level, 

and availability at the alarm limits (25, 5, and 2.5), based on the four lidar range accuracy levels 

(0.5, 1, 1.5, and 2m at 95%CL). Figures (4.8-4.11) present the improvement in protection level 

and position accuracy with an increase in the number of nearby vessels in each tested scenario.  

Table 4.3: summary of the average positioning standard deviation, protection level, and availability at the three-alarm limits 

Lidar 

range 

accuracy 

(95%) 

Number of 

vessels 

Position 

standard 

division 

mean (m) 

PL mean 

(m) 

Availability – in case n number of nearby 
vessels achieved  

 

Alarm limit 
25 (m) 

Alarm limit 
5 (m) 

Alarm limit 
2.5 (m) 

2   5 1.36 9.03 95% 36% <20% 

6 1.23 8.17 96% 45% <20% 

10 0.82 5.46 99% 57% <20% 

1.5  5 1.19 7.89 97% 52% 23% 

6 0.93 6.13 98% 48% 12% 

10 0.65 4.28 99% 88% 24% 

1 5 0.80 5.30 97% 70% 50% 

6 0.60 3.99 100% 76% 37% 

10 0.38 2.49 100% 99% 56% 

0.5 5 0.50 3.33 99% 86% 63% 

6 0.47 3.14 99% 93% 75% 

10 0.31 2.05 100% 99% 95% 

 

Figure 4.11: Average Horizontal Standard Deviation and horizontal protection level using Lidar with 2m Accuracy (95%) 
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Figure 4.12: Average Horizontal Standard Deviation and horizontal protection level using Lidar with 1.5 m Accuracy (95%) 

 

Figure 4.13: Average horizontal standard deviation and horizontal protection level using lidar with 1m accuracy (95%) 

 

Figure 4.14: Average Horizontal Standard Deviation and protection using Lidar with 0.5m Accuracy (95%) 

The results show that the average protection level and standard deviation vary based on the 

number of vessels and range accuracy, ranging from 2m to 9m for protection level, and 0.3m to 

1.4m for standard deviation. The results demonstrate that the developed approach delivers a 

high-performance level at a 25-meter alarm limit and appears promising for 2.5 and 5-meter alarm 

limits when the range is measured with better than 1-meter accuracy (95%). 
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The results above stem from an initial investigation involving 100 scenarios for each configuration, 

intended to identify a suitable level of range accuracy for use in the developed model. Given that 

the results of the Lidar with less than 1 m accuracy (95%) are seen as promising for a port phase.  

The performance of the developed approach depends on several factors, including but not limited 

to range accuracy, nearby vessels' position accuracy, their distribution (geometry), and distances 

to nearby vessels. The latter is significant and can significantly impact the developed approach 

performance in certain cases. This factor is generally overlooked in GNSS positioning because 

the distances between receivers and satellites are relatively within similar ranges. In more detail, 

in previous crowdsourcing tests involving vessels within a 100–1000 meters range, thus, the 

range from some nearby vessels might be ten times greater than others, potentially impacting 

system performance. Such scenarios, with ranges ten times greater than others, do not occur in 

GNSS. Therefore, the distances between the vessel and nearby ones should be carefully 

considered in positioning. Put differently, this factor is one dimension that should be considered 

alongside classical factors like geometry and range measurements. 

To evaluate the impact of distances to nearby vessels, an additional test was performed using 

distances to nearby vessels between 100-300 meters, and the results were compared with the 

previous experiments (based on distances of 100-1000 meters). The tests utilised LiDAR with 

0.5-meter accuracy (95%) in strong geometry mode. The findings revealed that when the distance 

range to nearby vessels was reduced to closer ranges (100-300 meters), there was a remarkable 

improvement in system performance across all metrics, as presented in Table (4.4). Figure (4.15) 

presents the 100-300 m  range results.  

Table 4.4: Outputs for average std, protection level, and availability for distance ranges 100-300 and 100-1000 m. 

Lidar 

range 

accuracy 

(95%) 

Distance 

range to 

nearby 

vessels 

(m) 

Number 

of 

vessels 

Position 

standard 

division 

mean (m) 

PL mean 

(m) 

Availability – in case n number of 
nearby vessels achieved 

 

Alarm 
limit 

25 (m) 

Alarm limit 
5 (m) 

Alarm 
limit 

2.5 (m) 

0.5 

 
100-1000 

5 0.50 3.33 99% 86% 63% 

6 0.47 3.14 99% 93% 75% 

10 0.31 2.05 100% 99% 95% 

0.5 

 
100-300 

5 0.42 2.84 99% 95% 69% 

6 0.28 1.87 100% 98% 75% 

10 0.23 1.58 100% 99.5% 96% 

 

Further investigation was conducted to test the geometry impact using LiDAR with a range 

accuracy of 0.5 meters (95%), using distances from nearby vessels ranging from 100-300 meters. 

The results indicate that geometry significantly impacts computational performance, as shown in 

Table (4.5). Figures (4.15, 4.16) present the average horizontal standard deviation and protection 

level for the weak and strong geometry solutions. 
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Table 4.5: Outputs from crowdsourcing solutions under weak and strong geometry conditions. 

Lidar range 

accuracy 

(95%) 

Geometry 

Distance 

range to 

nearby 

vessels 

(m) 

Number 

of 

vessels 

Position 

standard 

division 

mean (m) 

PL 

mean 

(m) 

Availability – in case n 
number of nearby 
vessels achieved 

 

Alarm 
limit 

25 (m) 

Alarm 
limit 
5 (m) 

Alarm 
limit 

2.5 (m) 

0.5 

 
Strong 

100-300 

5 0.43 2.84 99% 95% 69% 

6 0.28 1.87 100% 98% 75% 

10 0.23 1.58 100% 99.5% 96% 

0.5 

 
Weak 

5 1.99 13.19 97% 57% 31% 

6 1.39 9.22 93% 65% 33% 

10 0.75 4.97 96% 93% 57% 

 

Figure 4.15: Average Horizontal Standard Deviation and Protection Level using LiDAR with 0.5m Accuracy (95%) for distances of 
100-300 meters to nearby vessels in strong geometry mode. 

 

Figure 4.16 Average Horizontal Standard Deviation and Protection Level using LiDAR with 0.5m Accuracy (95%) for distances of 
100-300 meters to nearby vessels in weak geometry mode. 

The aforementioned results demonstrate that the geometry and distances to nearby vessels 

impact the positioning performance. This suggests using a measurement selection framework 

based on these factors to maintain high performance, especially when there is a high number of 
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nearby vessels and a solution separation approach is not employed to address multiple 

simultaneous failures.  

In addition to the above mentioned tests, in-depth testing was conducted on LiDAR systems with 

1-meter and 0.5-meter accuracy levels (95% CL). This testing involved three scenarios with 

varying numbers of nearby vessels: 5, 6, and 10. For each scenario, 10,000 simulations were 

generated, totaling 60,000 simulations. The tests were conducted with nearby vessel ranges of 

200 to 1000 meters, under strong geometry conditions. The outcomes of these tests are 

summarised in Table (4.6). These results, confirming the initial investigation reutls, demonstrate 

the potential of the developed approach in enhancing maritime navigation. 

Table 4.6: Summary of the Average Positioning Standard Deviation, Protection Level, and Availability at Three Alarm Limits. This 
table presents data from 10,000 scenarios for each specified number of nearby vessels, amounting to a total of 60,000 
scenarios. 

Lidar 

range 

accuracy 

(95%) 

Number of 

vessels 

Position 

standard 

division 

mean (m) 

PL mean 

(m) 

Availability – in case n number of nearby 
vessels achieved  

 

Alarm limit 
25 (m) 

Alarm limit 
5 (m) 

Alarm limit 
2.5 (m) 

1 5 0.6496 4.3044 0.9833  0.6985 0.4099 

6 0.5909 3.9152 0.9890     0.7749 0.4100 

10 0.4108 2.7222 0.99     0.9654 0.5306 

0.5 5 0.3816 2.5286 0.9885 0.8852 0.6778 

6 0.3486 2.3100 0.9896 0.9342 0.7524 

10 0.3400 2.2525 0.9904 0.9368 0.7608 

 

4.6 Summary 

This section introduces a novel crowdsourcing positioning framework with an integrated integrity 

monitoring layer. The approach underwent testing with a simulator developed by Imperial College, 

designed to handle various range accuracy/sensors (e.g. Radar and Lidar) and operational 

conditions such as geometry, and distance range to nearby vessels. Key outputs of the simulator 

include estimated position accuracy and horizontal protection level. In addition, the simulator was 

developed to manage a large number of scenarios. 

The approach was subjected to 30 experiments (in total 62,400 scenarios), each experiment 

incorporating different sensors with their accuracy levels and various configuration parameters 

that reflect operational conditions, including geometry and the distance range to nearby vessels. 

Three evaluation metrics were employed to assess the results: protection level, positioning 

accuracy, and availability at three alarm limits (2.5 m, 5 m, 25 m). As noted in Section 4.5.1, the 

availability in this context does not equate to system availability; instead, it refers to the crowd-

sourcing availability given that the input number of vessels is met.  

Table (4.6) summarises the results of the 24 experiments, including average standard deviation, 

protection level, and availability at the specified alarm limits. The experiment's aims and their 

findings can be summarised as follows: 
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• Experiments 1-6:  These cases were set up for an initial assessment of Radar-based 

crowdsourcing positioning using the radar as IMO standard (as specified in RESOLUTION 

MSC.192(79)) and FURUNO Radar (FR-2115-B, 2125-B, 2155-B, 2135S-B) that offer 

higher accuracy than the standard IMO specification. The results of these experiments 

show that the Radar-based crowdsourcing positioning provides a low level of 

performance, compared with the required level within the maritime phases.  

• Experiments 7-18:  These cases investigated LiDAR-based crowdsourcing positioning 

across various LiDAR accuracy levels (0.5, 1, 1.5, and 2 meters at 95% confidence level). 

The investigation covered all four accuracy levels across three scenarios of nearby vessel 

numbers (5, 6, and 7), with 100 strong geometry mode scenarios simulated for each 

scenario. The results suggest that this approach can deliver high performance at a 25-

meter alarm limit and shows promise for 2.5 and 5-meter alarm limits when the range is 

measured with better than 1-meter accuracy (95%). 

• Experiments 19-21:  These cases assessed the influence of the distance to nearby 

vessels on the developed approach's performance. The findings from these cases 

underscore the significant impact of this factor on positioning accuracy.  

• Experiments 22-24: These cases assessed the impact of the geometry factor. The 

outcomes of these experiments demonstrate that geometry factors play a significant role 

in positioning performance. Therefore, the geometry factor should be considered for 

measurement selection when solution separation is not applied. These aspects will be 

discussed in more detail in the implementation plan and future work in Section (5.2). 

• Experiments 25-30: These cases investigated in-depth LiDAR-based crowdsourcing 

positioning across two LiDAR accuracy levels (0.5 and  1 meter at 95% confidence level). 

The investigation covered two accuracy levels across three scenarios of nearby vessel 

numbers (5, 6, and 7), with 10,000 strong geometry mode scenarios simulated for each 

scenario. The results confirm the initial investigation results, suggesting that this approach 

can deliver high performance at a 25-meter alarm limit and shows promise for 2.5 and 5-

meter alarm limits. 
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ID 

Target 

range 

sensor 

Range 

accuracy 

(m) (95%) 

Aim 

Number 

of 

nearby 

vessels 

Distances 

range 

between 

the vessel 

and 

nearby 

ones (m) 

Geometry 

Number 

of 

Seniors 

Std 

 
HPL 

Availability 

Strong Weak 

Alarm 

limit 

25 (m) 

Alarm 

limit 

5 (m) 

Alarm 

limit 

2.5 (m) 

1 

Radar (IMO 

standard) 

within 30 m 

or 1% of the 

range scale, 

whichever is 

greater; 

Investigation 

Radar-based 

 

5 100-1000 
 

 100 14 95 <15% <5% <4% 

2 6 100-1000 
 

 100 13 90 <15% <5% <4% 

3 10 100-1000 
 

 100 11 75 <15% <5% <4% 

4 

Radar 

(FURUNO) 

within 15 m 

or 1% of the 

range scale , 

whichever is 

greater; 

investigation 

Radar-based 

5 100-1000 
 

 100 8 52 <25% <5% <4% 

5 6 100-1000 
 

 100 7 49 <25% <5% <4% 

6 10 100-1000 
 

 100 5 37 <25% <5% <4% 

7 Lidar 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2 
Investigation 

Lidar-based 

5 100-1000 
 

 100 1.36 9.03 95% 36% <20% 

8 6 100-1000 
 

 100 1.23 8.17 96% 45% <20% 

9 10 100-1000 
 

 100 0.82 5.46 99% 57% <20% 

10 

1.5 
Investigation 

Lidar-based 

5 100-1000 
 

 100 1.19 7.89 97% 52% 23% 

11 6 100-1000 
 

 100 0.93 6.13 98% 48% 12% 

12 10 100-1000 
 

 100 0.65 4.28 99% 88% 24% 

13 

1 
Investigation 

Lidar-based 

5 100-1000 
 

 100 0.80 5.30 97% 70% 50% 

14 6 100-1000 
 

 100 0.60 3.99 100% 76% 37% 

15 10 100-1000 
 

 100 0.38 2.49 100% 99% 56% 

16 0.5 

 

 

 

Investigation 

Lidar-based 

5 100-1000 
 

 100 0.50 3.33 99% 86% 63% 

17 6 100-1000 
 

 100 0.47 3.14 99% 93% 75% 

18 10 100-1000 
 

 100 0.31 2.05 100% 99% 95% 
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ID 

Target 

range 

sensor 

Range 

accuracy 

(m) (95%) 

Aim 

Number 

of 

nearby 

vessels 

Distances 

range 

between 

the vessel 

and 

nearby 

ones (m) 

Geometry 

Number 

of 

Seniors 

Std 

 
HPL 

Availability 

Strong Weak 

Alarm 

limit 

25 (m) 

Alarm 

limit 

5 (m) 

Alarm 

limit 

2.5 (m) 

19  

 

 

 

 

     Lidar  

 

 

 

 

 

 

 

 

      0.5 

 

Evaluating 

‘distances to 

nearby 

vessels’ factor 

impact 

5 100-300 
 

 100 0.42 2.85 99% 95% 69% 

20 6 100-300 
 

 100 0.28 1.87 100% 98% 75% 

21 10 100-300 
 

 100 0.24 1.58 100% 99.5% 96% 

22 
Evaluating 

Geometry   

factor impact 

5 100-300  
 

100 1.99 13.19 97% 57% 31% 

23 6 100-300  
 

100 1.39 9.22 93% 65% 33% 

24 10 100-300  
 

100 0.75 4.97 96% 93% 57% 

25 

1 
In depth 

investigation  

5 200-1000 
 

 10,000 0.64 4.30 98.3% 69.8% 40% 

26 6 200-1000 
 

 10,000 0.59 3.91 98.9% 77% 41% 

27 10 200-1000 
 

 10,000 0.41 2.72 99% 96% 53% 

28 

0.5 
In depth 

investigation 

5 200-1000 
 

 10,000 0.38 2.52 98.8% 88% 67% 

29 6 200-1000 
 

 10,000 0.34 2.31 98.9% 93% 75% 

30 10 200-1000 
 

 10,000 0.34 2.25 99% 94% 76% 
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5. Crowdsourcing as an e-Navigation Service  
  
One of the significant drawbacks of the proposed crowd-sourcing architecture is the reliance on 

the AIS system to transfer position and integrity data between vessels. AIS is based on a 

published standard, the signal is open entirely un-encrypted, and broadcasting of spoofed or 

misleading AIS messages is actually quite trivial. Corruption of AIS messages by noise or 

interference in the channel is also possible, as only simple checksums are applied and very little 

message authentication is provided.  

Furthermore, reliance on the AIS reported position of other vessels is not recommended for the 

purposes of collision avoidance, and no provision is made in the COLREGS [IMO Convention on 

the International Regulations for Preventing Collisions at Sea, 1972] for the use of AIS information 

at sea. Mis-use of AIS information as a sole means either for situational awareness, or for enacting 

collision avoidance may be considered a form of VHF assisted collision [IMO AIS Guidelines 

A.1106(29)]. It is recommended [MCA Marine Guidance Notice MGN324 (M+F) Amendment 1] 

that mariners may use AIS in conjunction with other information to assist with situational 

awareness and collision avoidance, but reliance on it as a sole means should be avoided.  

It is proposed that a more secure, and reliable method of transferring position and integrity 

information between vessels would be to implement this data transfer as an e-Navigation Service 

within the Maritime Connectivity Platform (MCP).  

The MCP is a conceptual, carrier agnostic, data communications and dissemination platform for 

sending electronic data between ships and shore-based infrastructure. This data is intended to 

underpin a number of automated e-Navigation services, with individual users electing to subscribe 

to receive data based on their navigation needs or geographical location.   

The MCP itself consists of three components:   

1. Maritime Identity Registry (MIR) serves the security of the MCP by containing a 

registry of unique identities for all maritime vessels and users and also acts as the 

certificate authority for the public-private-key cryptography, which underpins all 

communications over the MCP.   

2. Maritime Service Registry (MSR), performs the same task of maintaining an 

identity registry for service providers, and enables the maritime user to look up and 

subscribe to various e-Navigation services.   

3. Maritime Messaging Service (MMS) provides the architectural interface between 

shore-based service providers, and the MCP user vessels.   

All three of these aspects is important for the safe dissemination of integrity information between 

users, so we shall spend some time to describe each.  
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Figure 5.1: Basic Architecture of the MCP 

 The Maritime Identity Registry (MIR) records the unique identity of every entity (ship, device, 

organisation or service provider) that will access the MCP. It also provides the public key 

infrastructure (PKI) for a system of public-private-key cryptography to ensure data messages 

are secure, authenticated, and end-to-end encrypted.   

 

Figure 5.2: Basic public key infrastructure, showing the MIR boundary 

The functional operation of the MIR is out of the scope of this project, and it will not be 

described in full. It interfaces to the user by providing private key certification, and also the 

public key infrastructure to verify the authenticity of the broadcast data. This ensures two 

things:  

1. The positioning and integrity information is provided in encrypted messages 

along a secure channel, ensuring no corruption of the data can happen during 

transmission. Should the broadcast message become corrupted, the decryption 

service can detect this with a very high level of reliability.  



49 

 

2. The identify of the sender can be uniquely verified, making unauthorised 

transmission of false or misleading information to the user virtually impossible to 

achieve by a 3rd party.  

The Maritime Service Registry (MSR) provides descriptions of the various e-Navigation services 

that are available to the mariner in both human and machine-readable formats. It is effectively a 

phone book; app store; or portfolio of available services open to the users of the MCP to 

discover and to which they may subscribe. It also includes machine-readable service 

specifications that detail how the e-Navigation service functions, and how the required data is 

broadcast and managed [IALA guideline 1128]. Three main parts of the service description are 

as follows:   

1. Specification: A technology-agnostic description of a service on a logical level.   

2. Technical Design: A description of the technology-bound, actual realization of a 

service on a technical level.  

3. Instance: Information about the actual URI and other relevant data about a 

specific running service instance.   

The e-Navigation Service user will access the MSR to obtain this information in order to 

establish an instance of the Crowd Sourced Integrity service it describes. This access will also 

be via the identity registry, and end-to-end encrypted for security.   

 

Figure 5.3: Basic functional design of an MCP user accessing an e-navigation service. 

This report will not go into further details of the functional aspects of the MSR, since this is strictly 

out of scope of the INSPIRe project. More details of the operation of the three components of the 

MCP can be found in the Efficiensea2 website: (https://efficiensea2.org).  

The MCP, and associated e-Navigation services are built upon a number of physical data 

communications links, any and all of which may be employed interchangeably to facilitate data 

transfer to and from the ship. The system is designed to be carrier agnostic, and whichever 

communication route is available to the vessel at any one time will be employed to transfer data 

from ship-to-ship and from ship-to-shore.   
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• VHF Data Exchange System (VDES), makes use of a number of marine VHF 

frequency channels to broadcast data from ship to ship and ship to shore. It builds 

upon the Automatic Identification System (AIS), which uses VHF to communicate a 

ship’s identity, position and routing information among other data. VDES itself has two 

forms:   

o Terrestrial: VDE-TER uses two blocks of four adjacent VHF channels for 

data exchange when within range of VHF communications.   

o Satellite: VDE-SAT uses wider blocks of the VHF band for communications 

when outside VHF range of a base-station, and for higher bandwidth data 

backhaul.   

• Mobile telecoms. When within range of shore-based conventional LTE (3G, 4G, 

5G) data communications transmitters, the vessel will be able to exchange data 

securely over the internet via IP.   

• Satellite telecoms. When outside of coverage of conventional mobile telecoms, the 

vessel will be able to make use of satellite-based communications. This route induces 

additional call-and-response (ping) delays and may be unsuitable for some 

applications. 

 

Figure 5.4: The VHF Data Exchange System (VDES) 

 Modified hardware is required on-board the ship to interface to the e-Navigation service, acquire 

the integrity information, and pass it to the navigation integrity processor. The existing 

communications networks between the various users receiver will automatically route and deliver 

the data.   
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Figure 5.5: e-Navigation Maritime Messaging Service (MMS) Architecture, showing both VDES and conventional mobile 
telecoms links between a ship and shore-based service providers. 

There is some concern over the use of either VDE-SAT or conventional satellite communications 

(Iridium, or satellite telecoms such as One Web). The issue is that the transportation network may 

not be able to guarantee a delivery time for the data. This is particularly a problem for VDE-SAT, 

which operates store-and-forward packet routing and may result in several seconds delay 

between the integrity data being sent and being received by the user vessel.  

Communications via a dedicated VDES link would be the most reliable way to disseminate the 

data, but there may be concerns over the available bandwidth, especially if new position updates 

are to be disseminated from multiple nearby vessels at 1Hz update rates. Data compression and 

an appropriate message structure may have to be designed to facilitate an acceptable rate of data 

transfer.  
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6. Development and Implementation Plan 

6.1 System-level crowdsourcing (error characterisation)   

The findings of this report have underscored the need for error characterisation within the integrity 

monitoring framework, as they reveal that measurement errors do not follow a Gaussian 

distribution, requiring a paradigm shift towards an adaptive error characterisation framework. This 

will have an impact on a broader PNT landscape and applications, especially mission-critical 

ones. While the error characterisation has been applied at the system level in this report, future 

work should also evaluate user-level error characterisation. 

This section presents the future development and implementation plan to address these findings 

and guide future work towards enhancing the accuracy, integrity, availability, and continuity of 

mission-critical navigation including the maritime sector.  

6.1.1 System-level Adaptive Error Characterisation Framework  

Objective 

To develop a robust adaptive error characterisation framework capable of selecting the error 

distribution based on real-time quality indicators, this should account for the distribution 

overbounding.  

Strategy 

Future research to implement Machine Learning (ML) for the adoptive error distribution selection 

based on quality indicators in real-time operation. This requires a representative dataset for 

training purposes, and evaluating various ML methods including deep learning ones. In addition, 

this required selecting the quality indicators that are related to the error distributions. This should 

be done by evaluating the performance of overbounded Gaussian distributions against 

overbounded alternatives.  

6.1.2 Mechanism to utilise GEV distribution in the positioning algorithm  

Objective 

To devise a mechanism that simplifies the utilisation of the GEV distribution, which has shown 

the best results in terms of mapping extreme events. This can improve the system performance 

including accuracy, integrity, availability, and continuity.   

Strategy 

Future research to develop fast propagation models for GEV distribution - ML can be employed 

in this process. 
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6.1.3 Logistic Distribution Implementation 

Objective 

To apply the Logistic distribution for error characterisation, incorporating overbounding to maintain 

safety, if an adaptive error characterisation framework (see Section 6.1.1) is unavailable. This 

approach can be used based on the findings of this report (see Section 3.6).  

Implementation strategy 

Integrate the Logistic distribution into the existing system, applying overbounding techniques to 

guarantee the system's safety. This involves transmitting the Logistic scale parameter through 

integrity messages, as an alternative to the Gaussian distribution scale parameter. At the user 

level, modifications are required in the stochastic model’s variances to base them on the Logistic 

distribution. Consequently, the position solution will be presented using the Logistic distribution, 

this must be taken into account at protection level models. 

6.1.4 Carrier Phase Error Characterisation  

Objective 

To investigate the error characterisation for carrier phase measurements error, can support high 

accuracy carrier-phase integrity monitoring in the future.   

Strategy 

Conduct an error characterisation framework for carrier phase measurement errors based on the 

assessments used in this report, taking into account the aspects discussed in Section 3. This 

should evaluate the Gaussian assumption against alternatives and quantify the impact on system 

performance. 

6.1.5 Continuous Improvement 

Objective 

In case the ML-based adaptive error characterisation framework is developed (see Section 

6.1.1 ), the model should be improved with the increasing data volume over time.  

Strategy 

Implement regular updates to the framework, incorporating expanded datasets, and establishing 

a feedback loop with end-users and stakeholders to continuously gather insights and suggestions 

for improvement. 

6.1.6 Phased Rollout 

Objective 

To ensure a smooth transition and integration of the new adaptive error characterisation 

framework into the existing system. 

Strategy 
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Conduct pilot testing of the new framework in controlled environments to ensure stability and 

performance. 

6.1.7 User-level future works  

The future work outlined in the aforementioned development and implementation strategies 

concentrates on system-level error characterisation using crowd-sourced datasets. Although this 

report evaluates error distribution at the system level, the findings indicate potential directions for 

future work at the user level. Given that error distribution at the user level is more complex and 

distorted than at the system level, and considering the findings in this report, it can be seen that 

user-level error distributions do not follow Gaussian distributions. Based on this, the following are 

key areas for future work within the user-level framework: 

• Developing a User-Level Adaptive Error Characterisation Framework at the 

Measurement’s Domain  

This framework aims to select the measurement error distribution based on quality indicators 

and advanced selection models (e.g. ML/deep learning) that reflect the measurement quality and 

operational environments (including complex environments). The latter might be not significantly 

considered in the system-level adaptive error characterisation framework, making the user-level 

framework more complex. In addition, the system-level framework does not take into account 

user-level errors, which is crucial for ensuring safe operations.  

• Developing a User-Level Adaptive Error Characterisation Framework at the Position 

Domain  

This framework should develop a model to predict position error directly using quality indicators 

and deep learning, this can potentially enhance the system performance and speed compared 

to the measurement domain framework. The development of this framework is more complex 

than the aforementioned ones as the inputs for the deep learning model will include multiple 

quality indicators (each measurement having its quality indicators). 

• Developing an ML-Based Protection Level Prediction Model  

Future work should also focus on developing and testing ML-based protection level prediction 

models, utilising quality indicators. The aim of this approach is to address the multidimensional, 

nonlinear, and complex protection level computation. This should be done by ensuring the 

bounding of the estimated ML models and considering the integrity risk requirement.  
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6.2 User-level crowd-sources positioning    

The findings of this report (refer to Section 4.5.2) indicate that Lidar-based crowdsourcing is a 

promising method to enhance maritime navigation and overcome the current limitations of 

standalone GNSS in achieving the required performance level during the port phase. However, 

most long-range Lidars are designed for airborne applications, as there are very few applications 

that require precise long-range measurements with 360-degree coverage. Therefore, the 

developed approach opens a new dimension for the industry to manufacture 360-degree long-

range Lidars. Currently, airborne Lidars can be utilised by combining a number of Lidars to 

achieve 360-degree coverage. The following points summarise some of the key future work and 

implementation plans 

6.2.1   Specify the Lidar specification to support the port phase 

Objective 

To define the Lidar specification including accuracy to support the port phase.  

Strategy 

This should be done via a sensitivity analysis using a suitable platform, like the Imperial simulator, 

to define precisely the required level of accuracy.  

6.2.2   Define the Lidar failure mode and models 

Objective 

To delineate the failure modes and models of Lidar systems, as these aspects remain 

underexplored deeply to date. 

Strategy 

Conduct research to identify and understand Lidar failure modes and models, assess their impact 

on measurement quality, and evaluate the probability of such failures. 

6.2.3   Improve the Crowdsourcing Mathematical Model and Simulator Performance  

Objective 

To enhance the crowdsourcing mathematical model and simulator performance, thereby 

improving system accuracy and availability. 

Strategy 

• Incorporate defined LiDAR failure modes and models: Update the simulator to include the 

specific failure modes and models associated with LiDAR technology. This will allow for more 

accurate simulation of real-world scenarios.  

• Refine protection level computation assumptions: This involves refining the k-factor and 

nominal bias assumptions to increase the protection level reliability. 

• Develop a Measurements Selection Model: Create a model to select measurements based 

on quality indicators, including the geometry of the vessel distribution and the distance to 

nearby vessels.  
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• Develop a Solution Separation Integrity Model: Design an integrity model that utilises solution 

separation to address multiple simultaneous failures.  

6.2.4 Designing a combined set of Lidars based on the 'n' number of airborne Lidars to 

measure range precisely. 

Objective 

Designing a combined set of Lidars based on the 'n' number of airborne Lidars to measure range 

precisely.  

Strategy 

Conduct research to integrate a set of Lidars to ensure simultaneous 360-degree coverage and 

accurate range measurement collection. 

6.2.5 Future works shall consider the vessels speed in the user-level positioning and 

integrity monitoring algorithm 

6.2.6 The protection level information shall be transferred between vessels in the future 

to ensure the integrity and the level of confidence in the positioning information of 

nearby vessels. In addition, taking into account the overbounding of the range 

measurement is essential to ensure safe navigation. 

6.2.7 Disseminate the findings to academic, governmental, and industrial stakeholders, 

including manufacturers. 

To publish the report outcomes among academic, governmental, and industrial entities, including 

manufacturers, to showcase novel applications for long-range 360-degree Lidar, potentially 

catalysing new manufacturing directions 
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7. Exploitation Plan  

7.1 Overview of the Crowdsourcing Concept 

Crowdsourcing can be categorised into user-level and system-level types, which can be defined 

as follows: 

• User-level crowdsourcing relies on leveraging nearby GNSS devices to support the user-level 

navigation system. This can involve using the positioning information from nearby 

smartphones or, as implemented in this report, information from nearby vessels. 

• System-level crowdsourcing involves the use of any available PNT sources to support system-

level integrity monitoring, such as employing a CORS network. 

7.2 Applications domain 

Crowdsourcing offers the potential to support a wide range of mission-critical applications. The 

system-level crowdsourcing can support all mission-critical applications including aviation, 

maritime, autonomous vehicles, robotics, precision agriculture, and autonomous drone 

operations. This is because error characterisation and overbounding are essential elements of 

any positioning algorithm, particularly those critical to mission ones. Table (6.1) summarises the 

applications domain mentioned in the Government Office of Science study with its integrity 

requirements.  

For applications meeting the requirements (e.g., aviation), system-level crowdsourcing will reduce 

the alarm limit requirements in future, which can enhance operations. For those not yet meeting 

requirements, such as autonomous vehicles, robotics, and precision agriculture, system-level 

crowdsourcing will be a key element in achieving necessary performance levels in the future.  

User-level crowdsourcing positioning has the potential to support a wide range of PNT 

applications in the future such as autonomous vehicles, robotics, and Visually Impaired Persons 

(VIP), especially as smart cities evolve to integrate communication among vehicles, pedestrians, 

and infrastructure. The advantage of this approach is rooted in the limitation that standalone 

GNSS systems cannot achieve the requirements for high-accuracy applications, especially within 

challenging urban environments. 

7.3 Opportunities for equipment, application, and service providers:  

System-level crowdsourcing offers opportunities for SBAS providers, such as ESA, to utilise 

CORS networks to improve error characterisation and deliver more reliable and safer distributions 

to users. In the UK, the focus on system-level crowdsourcing underscores the need for a robust 

CORS network with enhanced data update rates and precision. This provides Ordnance Survey 

and its commercial partners (Hexagon, Trimble, Topcon, AXIO-NET, SoilEssentials, Premium 

Positioning) the opportunity to improve the OS Net CORS network's performance to achieve the 

required level of performance for system-level crowdsourcing, including offering enhanced 

precision and update rates to users. 

In addition, system-level crowdsourcing offers opportunities for equipment providers to enhance 

positioning performance by utilising Gaussian alternatives as novel features. If Gaussian 
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alternatives are provided to users, algorithms must be adapted to handle these alternatives, which 

can improve positioning performance. Of the equipments providers can benefits from this feature 

include: Ublox, Hexagon, Trimble, Stonex, Teseo, NovAtel, Furuno, Bosch Sensortec, 

STMicroelectronics, Quectel, Telit, SkyTraq, Swift Navigation, Septentrio, and JAVAD GNSS.  

Sector Application Required 
Accuracy 

Required Integrity 
risk 

Telecoms LTE-A 
& 5G 

500ns < 10−9 

LTE-TDD 1.5µs < 10−9 

Billing & alarms 1ms - 500ms < 10−9 

Finance High-frequency trading 0.1ms < 10−9 

Electronic trading 1ms < 10−9 

ATM transactions 1ms - 1s < 10−9 

Voice trading 1s < 10−9 

Energy Infrastructure monitoring 0.1m 10−6 

Oil rig dynamic positioning 0.1m 10−7 

Oil & gas exploration 5m < 10−5 

Oil & gas supply 50m 10−5 

Protection systems Wide area 
monitoring 

1µs < 10−7 

Infrastructure monitoring & 
control 

>1µs < 10−7 

Emergency 
Services 

Lane-level vehicle navigation 0.5m 10−7 

Identifying the position of 
incidents 

2m -5m 10−7 

Dynamic routing 5m 10−5 

Food and 
Farming 

Automatic farm machines 0.5m 10−5 − 10−4 

Pest control & prevention 0.5m - 1.0m 10−5 − 10−4 

Yield mapping & plot mapping 1.0m 10−4 

Tracking of goods & vehicles 50m 10−4 

Aviation CaT II / III PA/surface movement 1.0m 10−9 

CAT I precision approach (PA) 4.0m 10−9 −  10−7 

Approach operations with 
vertical guidance 

16.0m 10−9 −  10−7 

Non-precision approach 220m 10−7 

En route, terminal 740m 10−7 

En route, navigation 3700m 10−7 

Road Lane-level vehicle navigation 0.5m 10−7 

Dynamic routing 5m 10−4 

Fleet management >50m 10−3 

Rail Infrastructure Customer 
applications monitoring 

>1m 10−6  -  10−5 

High-density command & control 1m  - 5m 10−9 

Low-density command & control 5m- 50m 10−7 -10−6 

Customer applications 5m - 100m 10−6 -  10−5 

Asset management 50m - 100m 10−7 -10−6  
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Maritime Automatic docking 0.1m 10−7 

Port operations 0.1m - 1.0m 10−6 

Cargo handling 0.1m 10−6 − 10−4 

Port approach 5.0m 10−6 -  10−4 

Icebreakers 5.0m -10m            - 

Coastal navigation 10m 10−6 -  10−4 

Search & rescue 10m  - 50m 10−7 -  10−6 

Ocean navigation 50m 10−4 

Surveying 
and Mass-

market 
applications 

Surveying 0.1m 10−6 

Sports 5.0m - 50m 10−4   

Social networking 50m 10−4 

Autonomous 
road vehicles 
and drones 

Autonomous road vehicles 0.1m - 1.0m 10−7 

Drones 5.0m - 10m 10−7 -  10−6 

New space Spacecraft docking 0.1m - 0.5m 10−7 

Satellite orbit determination 0.5m 10−6 

Space navigation 50m 10−5 
Table 6.1: GNSS applications accuracy and integrity requirements, approximated from study graphs 

(Whitty and Walport,2018). 

 

In user-level crowdsourcing, the approach developed in this report recommends utilising Lidar to 

measure distances in order to achieve the required performance level during the porting stage. 

As previously mentioned, most long-range Lidars are designed for airborne applications, with very 

few requiring precise long-range measurements with 360-degree coverage. Consequently, the 

approach introduced here paves the way for the industry to innovate and produce 360-degree 

long-range Lidars. This can offer opportunities for Lidar manufacturers includes: Velodyne Lidar, 

Luminar Technologies, Leica Geosystems, SICK AG, Teledyne Optech, RIEGL Laser 

Measurement Systems, Quanergy Systems, Trimble, FARO Technologies, and Hesai 

Technology  

User-level crowdsourcing has significant potential to extend into various industries, with 

autonomous driving being a particularly promising area. The following are key research and 

development providers in the autonomous driving sector: 

• Waymo  

• Cruise Automation  

• Tesla 

• Aptiv  

• Uber Advanced Technologies Group  

• NVIDIA Corporation  

• Mobileye  

• Baidu Apollo  

• Argo AI  

• Zoox  

• Aurora - Founded by former leads from Google, Tesla, and Uber,  

• Nuro 
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9. Appendix 
 

 

Figure 9.1: pseudorange error characterisation using the six distributions in PDF and CDF domain, dataset 5 

 

 

Figure 9.2: pseudorange error characterisation using the six distributions in PDF and CDF domain, dataset 6 

 

 

 

Figure 9.3: pseudorange error characterisation using the six distributions in PDF and CDF domain, dataset 7 
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Figure 9.4: pseudorange error characterisation using the six distributions in PDF and CDF domain, dataset 8 

 

 

Figure 9.5: pseudorange error characterisation using the six distributions in PDF and CDF domain, dataset 9 

 

 

Figure 9.6: pseudorange error characterisation using the six distributions in PDF and CDF domain, dataset 10 
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Figure 9.7: pseudorange error characterisation using the six distributions in PDF and CDF domain, dataset 11 

 

 

Figure 9.8: pseudorange error characterisation using the six distributions in PDF and CDF domain, dataset 12 

 

 

Figure 9.9: pseudorange error characterisation using the six distributions in PDF and CDF domain, dataset 13 
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Figure 9.10: pseudorange error characterisation using the six distributions in PDF and CDF domain, dataset 14 

 

 

Figure 9.11: pseudorange error characterisation using the six distributions in PDF and CDF domain, dataset 15 

 

 

Figure 9.12: pseudorange error characterisation using the six distributions in PDF and CDF domain, dataset 16 
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Figure 9.13: pseudorange error characterisation using the six distributions in PDF and CDF domain, dataset 17 

 

Figure 9.14: pseudorange error characterisation using the six distributions in PDF and CDF domain, dataset 18 

 

 

Figure 9.15: pseudorange error characterisation using the six distributions in PDF and CDF domain, dataset 19 

 

 

Figure 9.16: pseudorange error characterisation using the six distributions in PDF and CDF domain, dataset 20 


