

Welcome to Oxford Brookes & Our Related Research

December 2023: Connected, Automated Mobility & Future of Transport

Oxford Brookes University

- Faculty of Social Sciences
- Faculty of Health Sciences
- Business Faculty
- Faculty of Technology, Design and Environment
 - School of Architecture
 - School of Arts
 - School of Built Environment
 - School of Engineering, Computing and Mathematics

The UK motorsport valley and Oxford science park

- Culham Science Centre
- Culham Centre for Fusion Energy
- Rutherford Appleton Laboratory Harwell Campus
- Begbroke Science Park
- Millbrook RACE AV test facility

Our New Home - Campus move

Cutting edge, sustainable buildings on the Headington Hill site which will enhance STEM

The purpose-built workshop is dynamic, flexible space: industry-standard technical facilities with specialist engineering equipment

Taught Programmes - Postgraduate and Undergraduate

Engineering

- Mechanical
- Electro-Mechanical
- Automotive with EV
- Motorsport
- Racing Engine Systems

- Computer Science
- Cyber Security
- Artificial Intelligence
- Data Analytics
- IT for business

Award-Winning Electric and Autonomous racing teams

Formula Student Electric

Autonomous Driving & Intelligent Transport

Formula Student Autonomous

Engineering Research

High Voltage Systems

High Voltage, Electronics and Energy Storage Lab (HVEES)

Equipment

HV BIDIRECTIONAL POWER SUPPLY

AVL Pack Tester

Power Supply

Oscilloscope

Temperature and Humidity Chart Recorder

Binder Cell Chamber

Arbin Cell Cycler

Digital Multimeter

ES The High Voltage & Energy Storage Group at Oxford Elrookes University

Gamry 5000P Potentiostat

Computing Research

5 research groups: Applied Software Engineering, Cybersecurity and Cloud, Dependable Systems, Epistemic

AI, Machine Learning and Robotics

Oxford Brookes Institute for Artificial Intelligence, Data Analysis and Systems (AIDAS)

- New flagship Computing research institute
- Director: Prof. Fabio Cuzzolin
- Coordinates activities across all Computing research groups
- Also incorporates Centre for AI, Culture and Society (ex. Institute for Ethical AI)
- 4 pillars:
 - Global Challenges \bigcirc
 - Enterprise
 - Innovation \bigcirc
 - Foundations

VISUAL ARTIFICIAL INTELLIGENCE LABORATORY

- **Computer Vision** (deep learning for action detection, video captioning, complex activities, future event prediction, scene understanding)
- Machine Learning (continual learning, federated learning, self-supervised learning)
- Artificial Intelligence (machine theory of mind, epistemic AI, neuro-symbolic reasoning)
- Al for Healthcare (audio-visual monitoring of people in a coma, empathetic AI)
- Surgical Robotics (SARAS, MAESTRO)
- Autonomous Driving (Formula Student AI, ROAD)
- Uncertainty Theory (random sets, belief functions, geometry of uncertainty)

Research

PROF FABIO CUZZOLIN

Connected Vehicles

Communications & Cybersecurity

Transactions with Infrastructure & Vehicles

Safras Iqbal Peter Ball George Blumberg Muhammad Hilmi Kamarudin Fabio Iapaolo Shadi Eltanani

Advanced Perception Systems

Road User Behaviour

Fabio Cuzzolin Valentina Musat Nabil Yassine Izzeddin Teeti Alex Rast Ivan Fursa

Robust Perception in Challenging Conditions

Fabio Cuzzolin Andrew Bradley Maryam Sultana Muhammad Mubashar Shireen Kuddukil Manchingal Youssoufa Alhadji

Epistemic Al

Real-time Vehicle Control

John Durodola Andrew Bradley Ozdemir Ozerem Marco Try Martos Gerren Nitri Aydin Azizi Paul Allen

Localisation & Mapping

Alex Rast Matthias Rolf Andrew Bradley Aduen Benjumea Louise Bilous

Autonomous Racing

Aduen Benjumea Thomas LeClaire Mihir Gohad Sebastian Donnelly Lora Hernandez-Herrera

Seeing is Believing

Advanced Perception

- Perception: transforming sensor data into object information
- Usually involves very big machine learning models
- Many challenges:
 - Object/background separation
 - 2-D/3-D projection
 - Sensor fusion Ο
 - **Object identification** \bigcirc
 - Sensor degradation (e.g. due to weather, darkness, etc.) \bigcirc
 - **Real-time speed** \bigcirc

Brookes groups (Visual AI Lab, Autonomous Driving and Intelligent Transport) are at the forefront of research in this area.

Benjumea, A., Teeti, I., Cuzzolin, F., Bradley, A., (2021). YOLO-Z: Improving small object detection in YOLOv5 for autonomous vehicles. IEEE/CVF International Conference on Computer Vision (ICCV) ROAD challenge workshop, 2021.

V. Musat, I. Fursa, P. Newman, F. Cuzzolin and A. Bradley, "Multi-weather city: Adverse weather stacking for autonomous driving," in 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW), Montreal, BC, Canada, 2021 pp. 2906-2915. doi: 10.1109/ICCVW54120.2021.00325

Adverse Weather / Lighting

- Computer vision in good weather is (relatively) easy
- Driving in adverse weather is hard \bullet
- Night is particularly challenging
- The real world offers no weather guarantees
- Robust perception is essential for Level 5 autonomous vehicles

Oxford: Good vs. adverse lighting - Oxford RobotCar dataset - OBU Detections

W. Maddern, G. Pascoe, C. Linegar and P. Newman, "1 Year, 1000km: The Oxford RobotCar Dataset", The International Journal of Robotics Research (IJRR), 2016.

Augmentation: Multi-weather city

Adverse weather stacking for autonomous driving

- Use of GANs for style transfer
- Vast increase in the amount of training data

Musat, V., Fursa, I., Newman, P., Cuzzolin, F., Bradley, A. (2021). 'Multi-weather City: Adverse Weather Stacking for Autonomous Driving'. 2021 International Conference on Computer Vision.

VISUAL ARTIFICIAL INTELLIGENCE LABORATORY

Augmentation: Worsening Perception

Deliberate worsening of camera imagery to emulate the effect of adverse weather upon the AV perception system

Enables stress-testing of downstream subsystems

Fursa, I., Fandi, E., Musat, V., Culley, J., Gil Esteller, E., Bilous, L., Vander Sluis, I., Rast, A., Bradley, A. (2021). 'Worsening Perception: Real-time Degradation of Autonomous Vehicle Perception Performance for Simulation of Adverse Weather Conditions'. SAE Journal of Connected & Automated Vehicles. arXiv:2103:02760.

Real world S=3. mAP = 0.730

Augmented simulation: $k_{droplet} = 0.28$. mAP = 0.650

Heavy droplets

Real world S=4. mAP = 0.587

Augmented simulation: $k_{droplet} = 0.55$. mAP = 0.490

"We'll see"... Isn't good enough

Road Understanding

Weather conditions

Road user behaviour

Robust perception

Autonomous system & vehicular integration

Vehicle control

Position, localisation & Mapping

ROAD: ROad event Awareness Dataset AUG I Autonomous Driving & Intelligent Transport

World's first dataset for road awareness in autonomous driving

- 122k frames, 1.7M labels
- Annotation layer on videos from the Oxford RobotCar Dataset
- ROAD Workshop at ICCV'21
- IEEE PAMI publication:

Singh, G., Akrigg, S., Di Maio, M., Fontana, V., Alitappeh, J.R., Saha, S., Jeddisavari, K., Yousefi, F., Culley, J., Nicholson, T., Omokeowa, J., Khan, S., Grazioso, S., Bradley, A., Di Gironimo, G., Cuzzolin, F. (2021). 'ROAD: The ROad event Awareness Dataset for Autonomous Driving'. IEEE Transactions on Pattern Analysis and Machine Intelligence.

VISUAL ARTIFICIAL INTELLIGENCE LABORATORY

Action Detection & Prediction

- Time series predictions of evolution of actions
- Theory of Mind (ToM) simulations
- Essential for unstructured environments

LABORATORY

Epistemic Al for Autonomous Driving

- €3 M (€1,209,000 to Brookes) EU Horizon 2020 Project
- Oxford Brookes is the lead and coordinator of the project
- Epistemic AI: Quantifying 'unknown unknowns'
 - Model uncertainty \bigcirc
 - Out-of-distribution events \bigcirc
 - Missing data \bigcirc
- Learn the space of models, not just a model
- Robust to unreliable/constantly changing data
- A movement towards explainable Al
- Rapid, 'single shot' learning
- A more reliable approach for unstructured environments

VISUAL ARTIFICIAL

INTELLIGENCE

LABORATORY

Ethical Autonomous Vehicles

- Development of machines with moral competence
- Ethical Alignment of the behaviour of autonomous robots with user/societal moral norms (e.g. acceptable driving behaviours)
- Mitigation of the discovery of inappropriate robot behaviour through exploratory learning (i.e. Reinforcement learning)
- Enabling robots to learn virtues

Overtaking Scenarios

Testing Times

Simulating Autonomous Vehicles

Vehicle dynamic modelling

Driver-in-Loop Simulation

Sensor modelling

HiL testing

Augmented-Reality testing

- Enables targeted use of augmented data to enhance dataset
- Stress-testing perception systems
- Building better prior knowledge about the world

Fursa, I., Fandi, E., Musat, V., Culley, J., Gil Esteller, E., Bilous, L., Vander Sluis, I., Rast, A., Bradley, A. (2021). 'Worsening Perception: Real-time Degradation of Autonomous Vehicle Perception Performance for Simulation of Adverse Weather Conditions'. SAE Journal of Connected & Automated Vehicles. arXiv:2103:02760.

Augmented-Reality Testing

Main strengths of the proposed test system:

- Testing on high integration level ٠
- Experience of dynamic system behaviour ٠
- Significant reduction in testing effort, cost and ٠ timescale
- Flexibility in test case variation

The dynamic Vehicle-in-the-Loop Simulation System in this project will be fitted into a real StreetDrone vehicle.

Multiple virtual vehicles will be injected in order to test vehicle control systems and decision making capabilities in a controlled, repeatable, cost-effective and configurable way.

... and interacts with surrounding virtual vehicles

Is the world ready for AVs?

Infrastructure Readiness for CAVs

Structures		Roads	Con	nm
Parking facilities		Autonomy-enabled roads	3	Roo
Fuelling and power distribution	* *	Maintenance		Mu sigr
Segregated infrastructure		Road geometry		Co pla
Street lighting			P	Clc mc sigr
Roundabouts			0	Ha

One of the most important requirements for creating CAV-enabled road systems is achieving **maximum predictability** in the traffic environment.

unications

- adside mmunication
- Water and flooding

Drainage

- Platooning and convoys – tunnels,
 - vegetation

- ultiple traffic nals
- onstruction
- ans
- arity of road
- arkings and
- nage
- ndling tolls

Al Intersection Management Control Zone Buffer Zone uik Intersection Manager (IM)

- Reinforcement Learning (RL) defines the objective
- Deep Learning (DL) gives the mechanism
- RL + DL = General Intelligence

Budan, G., 2021. Connected and automated vehicle enabled traffic intersection control with reinforcement learning (Doctoral dissertation, Oxford Brookes University).

Communications & Cyber Security

- Risk of exploiting communication layer on CAVs with many potential cyber-attacks
- Machine Learning approaches for anomaly detection and mitigation techniques for cyber threat on CAVs

Connection

Infrastructure

Cyber Security

- Simulate cyber attacks on CAVs to generate a dataset
- Train a Machine learning model for threat detection

Iqbal, S., Ball, P., Kamarudin, M.H., Bradley, A., (2021). Simulating Malicious Attacks on VANETs forConnected and Autonomous Vehicle Cybersecurity: A Machine Learning Dataset. CSNDSP 2022

Motorsport accelerates innovation

Annual international competition held at Silverstone racetrack

Two classes:

- ADS Class Design and build (or retrofit) your own autonomous racing car
- DDT Class Use competition-provided car with your own software and sensors

Static Events:

Institution of **MECHANICAL**

ENGINEERS

Business Plan Presentation 100 Real World Al 100 Engineering Design 150 Simulation Development 100 45%

Dynamic Events:

Skid Pad Acceleration Autocross/Sprint Trackdrive 55%

2019

- First place Real World Autonomous event
- Completed 10 laps of the track drive event fully autonomously

2020

• 1st place overall (DDT Class)

2022

- 1st place statics
- 3rd place overall (DDT Class)

2021

• 2nd place overall (DDT Class)

2023

- 1st place statics
- 2nd place overall (DDT Class)

Publications resulting from student work

- S. Garlick & A. Bradley (2022) Real-time optimal trajectory planning for autonomous vehicles and lap time simulation using machine learning, Vehicle System Dynamics, 60:12, 4269-4289, DOI: 10.1080/00423114.2021.2011929
- Singh, G., Akrigg, S., Di Maio, M., Fontana, V., Alitappeh, J.R., Saha, S., Jeddisavari, K., Yousefi, F., Culley, J., Nicholson, T., Omokeowa, J., Khan, S., Grazioso, S., Bradley, A., Di Gironimo, G., Cuzzolin, F. (2022). 'ROAD: The ROad event Awareness Dataset for Autonomous Driving'. IEEE Transactions on Pattern Analysis and Machine Intelligence. arXiv: 2102.11585.
- Fursa, I., Fandi, E., Musat, V., Culley, J. et al., "Worsening Perception: Real-Time Degradation of Autonomous Vehicle Perception Performance for Simulation of Adverse Weather Conditions," SAE Intl. J CAV 5(1):87-100, 2022, https://doi.org/10.4271/12-05-01-0008.
- Benjumea, A., Teeti, I., Cuzzolin, F., Bradley, A., (2021). YOLO-Z: Improving small object detection in YOLOv5 for autonomous vehicles. IEEE/CVF International Conference on Computer Vision (ICCV) ROAD challenge workshop, 2021.
- Ravi, S., Bradley, A., Collier, C. (2020). 'MPC Controller for Autonomous Formula Student Vehicle'. SAE Technical Paper Series 2020-01-0089.
- Budan, G., Hayatleh, K., Morrey, D., Ball, P., Shadbolt, P. (2018). 'An analysis of vehicle-to-infrastructure communications for nonsignalised intersection control under mixed driving behaviour'. Analog Integrated Circuits and Signal Processing.

Summary

- Leading institution for automotive & motorsport education
- Specialist facilities for High Voltage Energy Systems for EVs
- Expertise in Al
- Highly active, industry-linked CAM research community including:
 - Perception in challenging conditions
 - Prediction of road user behaviour \bigcirc
 - Low-power embedded computing
 - Connected vehicles \bigcirc
 - Cybersecurity for CAVs
 - Explainable and transparent Al
- Award-winning human and autonomous racing teams
- OBR Autonomous team: Training students to be the next generation of autonomous vehicle engineers & developers

Email: <u>abradley@brookes.ac.uk</u>

https://www.brookes.ac.uk/research/units/tde/groups/autonomous-driving-andintelligent-transport

Questions?

