

WP2, WP3, WP4 & WP6 Integrity Monitoring

Presentation of the Team

- GMV-NSL is the UK operating company of the GMV group
- Formed in late 2020 following **900** sition of NSL by GMV and the merger with GMV-UK
- 25 years experience in GNSS research and development
- Active in many areas related to GNSS integrity (UK-SBAS, SouthPAN, ARAIM)
- Responsible for user level integrity work packages 2, 3, 4 and 6

• WP Supported by GLA Research and Development (GRAD)

INSPIRe

To produce and validate algorithms for user-level integrity for PNT solutions at the following levels:

• WP2

• A single frequency GNSS RAIM type solution, standalone in the user PNT processing system (Maritime GRAIM [MGRAIM]) or with EGNOS V2-aiding (Maritime RAIM [MRAIM]);

• WP3

• A dual-frequency, multi-constellation GNSS RAIM type solution, standalone in the user PNT processing system (MGRAIM) or with aiding from a dual frequency, multi-constellation integrity monitoring system, conceptually aligned to a future EGNOS V3 (MRAIM);

• WP4

• A vessel autonomous integrity monitoring (VAIM) type solution, loose coupling dual frequency, multiconstellation GNSS with onboard dead reckoning.

To define the UK system-level integrity monitoring and the alerting system needed to fulfil international obligations for aids to navigation (AtoN) services in the maritime sector. This will comprise of :

• WP6

• a RAIM availability prediction capability, consistent with the three tiers of user-level integrity above, also developed and validated to prototype level;

Description of User Level Integrity Activities WP2 – Develop and test GPS M(G)RAIM Algorithms

- Purpose
 - Explore, develop and test algorithms to provide <u>user-level</u> <u>integrity</u> for <u>single frequency GPS</u> with and without <u>system-level</u> integrity information from EGNOS V2.
- Focus
 - Considering current equipment (GPS L1 receivers, with and without SBAS)
 - Aligning with current procedures (red, amber, green status)
 - Algorithms to improve current user-level integrity without major changes
 - Geometry, accuracy, fault detection
- Testing
 - Baseline clean GPS L1 data with and without EGNOS
 - Introduction of different types of fault (ramps, jumps, ionosphere, multipath and non-LoS)
 - Assess performance
 - Provides framework for future testing regime

ALERT CONCEPT

WP3 – Develop and Test DFMC M(G)RAIM

- Purpose
 - Explore, develop and test algorithms to provide userlevel integrity for dual frequency multi-constellation GNSS.
- Focus
 - Considering future equipment (GPS+GAL L1/L5 receivers, with and without DFMC SBAS)

- Aligning as far as possible with current procedures (red, amber, green status) ٠
- Algorithms to improve user-level integrity and looking to future requirements
 - Geometry, accuracy, fault detection, Protection Levels
- Testing
 - Same baseline dataset and faults as WP2 also including GPS, Galileo, L5/E5 and DFMC SBAS
 - Assess performance for WP2 algorithms
 - Assess performance with modified algorithms for possible future implementation

WP4 – Develop & test DFMC & DR VAIM

- Purpose
 - Explore, develop and test algorithms for the integration of <u>DFMC GNSS</u> and dead-reckoning to create a VAIM solution (analogous to aviation AAIM).
- Focus
 - Considering future equipment (GPS+GAL L1/L5 receivers)
 - Considering integration with other sensors (IMU, speed logs)
 - Algorithms to improve user-level integrity
- Testing
 - Reference clean datasets (real or simulated) with DFMC GNSS and other sensors
 - Introduction of different types of fault (ramps, jumps, ionosphere, multipath and non-LoS)
 - Assess performance

WP6 – Develop prototype RAIM availability prediction tool

- Purpose
 - Design, develop and produce the prototype RAIM availability prediction tool, similar to, but extended from, the EUROCONTROL AUGUR facility
- Focus
 - Modelling the availability of RAIM for combinations of GNSS frequencies and constellations considering the RAIM algorithms developed in WP2 and WP3
- Demonstration
 - The tool will predict RAIM availability acros the UK to the limits of the exclusive economic zones (EEZ) at various levels of integrity performance

Summary WP Outcomes

WP	Description
WP2	 Overall description of the chosen M(G)RAIM algorithms Outcomes of testing of GPS M(G)RAIM algorithms Description of the suitability and shortcomings of the algorithms for use in the maritime environment, highlighting any areas that need improvement Assessment of the need for a maritime-specific EGNOS message to support MRAIM
WP3	 High-level description of the DFMC MRAIM and MGRAIM algorithms Outcomes of their test and evaluation of the DFMC M(G)RAIM algorithms. Description of the suitability and shortcomings of the algorithms for use in the maritime environment Assessment of potential benefits of maritime specific EGNOS V3 message

Summary WP Outcomes

WP	Description
WP4	 Generation of a clear concept definition for VAIM Assessment and trade-off analysis of different GNSS and dead reckoning loose coupling schemes Definition of VAIM algorithms based on the preferred loose coupling scheme Evaluation of the prototype algorithms An assessment of the feasibility of a maritime VAIM solution
WP6	 The prototype RAIM prediction tool implemented in software (using a suitable application A development and implementation plan for a UK RAIM prediction service High-level estimated cost assessment

Thank You

<u>Michael.Pattinson@gmv.com</u> <u>Terri.Richardson@gmv.com</u>