

Introduction to INSPIRe

Professor Washington Yotto Ochieng, EBS, FREng

Content

- Background:
 - Required Navigation Performance
 - Need for Integrity
 - Types of Integrity Monitoring
 - Remaining Integrity Monitoring Issues

- Integrated Navigation System-of-Systems PNT for Resilience (INSPIRe)
 - Context
 - Focus

Required Navigation Performance (RNP)

- Measures/Metrics to measure performance consider:
 - performance in the absence of failure
 - performance in the presence of failure
 - operational economy
 - Standardisation

- Quantification of metrics for a given application
 - RP_{model} = f (operational factors, safety/security/liability... & efficiency)

Performance in the absence of failure (2/2)

- Accuracy
- Conformance of estimated position solution to the true position (95%)

Performance in the presence of failure (1/2)

• Providing mission criticality e.g. safety – *integrity*

Performance – Operational economy & standardisation

- Providing system access *availability*
 - accuracy, integrity & continuity requirements satisfied
 - proportion of time of positioning at required levels
- Standardisation
 - transferability to other domains
 - education of manufactures, service providers & users
 - support to relevant policy and regulatory authorities

Why Monitor Integrity ? – Example of GPS

• Well documented GPS failures

- SVN23; SVN27 - atomic frequency standard failure (1, 2004; 8,2004)

Integrity Monitoring Methods

- GNSS stand-alone integrity insufficient for many mission critical applications
 - e.g. GPS SPS PS integrity risk of 10-5 /hr with a 10-second TTA
- Currently two main approaches
 - system/ground level (GIC/SBAS/GBAS)
 - sensor/user (R)AIM

Ground / System Level: SBAS/GBAS

- SBAS/GBAS designed for:
 - improved accuracy through differential corrections
 - improved integrity (dedicated infrastructure)
 - improved availability by additional ranging (SBAS)
- Integrity
 - failures detected using reference station location(s) alerts for 'major' failures
 - quality data sent to users for computation of Protection Level (PL)
 - PL is compared to Algert Limit (AL) to determine complifince $\sigma_{RX}^2 = \sigma_{tropo}^2$

$$VPL = k_V \sqrt{\sum_{sats} s_V^2 \sigma^2}$$
 (ICAO SBAS model)

Ground / System Level: SBAS/GBAS Issues

- Network installed, tested, operated and maintained at a cost
- Currently regional (complexities associated with global coverage)
- Additional geostationary satellites
- Increasingly challenging Time-To-Alert (TTA) requirements
- Performance improvements may require a system-wide overhaul
- Localised failures may not be detected by the ground segment
- Gaussian assumption

User Level: RAIM

- Baseline FDE RAIM steps •
 - PL computation
 - failure detection
 - failure exclusion
- **Detection function** •
 - measurement consistency
- Exclusion function •
- Main RAIM strengths •
 - autonomy
 - local failure/error detection

User Level: RAIM issues

Issues	Current attempts at resolution
Critical geometry (max slope)	Integration
RAIM availability	Integration, better PL
Multiple failures	Separation (Group/Solution)
Failure models	FMEA
Residual error characterisation	Dist. drivers, EVT / other models
Failure probability	FMEA
Failure rate (small/brief errors)	FMEA
Exclusion	Separation (Group/Solution)
Time-To-Alert	Early detection techniques (e.g. <i>difference test</i> for SGEs)

Impact of new signals

• Greater satellite visibility

- more satellites, more signal power, longer codes
- pilot signals, fast acquisition
- higher penetration, better interference protection

• Higher ranging accuracy

- less multipath, less ionospheric error
- better tropospheric modelling due to more satellites
- less orbit and clock errors

• Better integrity monitoring

- greater satellite visibility, system and signal diversity
- optimal 'mix' of data?
 - redundant or interoperable solution preferred?
 - consider differences in the spatial and temporal references
 - other potential failure modes?

Ground Based / System Level - Impact of new signals

- Relatively sparse network <u>multiple frequencies</u>
- Interoperability
 - monitoring of other systems
 - liability of combined solutions for mission critical applications
- Failure database crucial for satellite upgrades
- <u>Multi-constellation</u> environment requires
 - spatial and temporal reference frame offsets?

llcor			
USEI	Issues	Current attempts at resolution	Impact of New Signals/Systems
	Critical satellite geometry	Integration	Major impact
	RAIM availability	Integration, better PL	Major impact
	Multiple failures	Separation (Group/Solution)	Major but trade/off with failures associated with new satellites
	Failure models	FMEA	Major - better signals and error modelling Potential for new failure modes
	Residual error characterisation	Dist. drivers, EVT / other models	Change in residuals due to multiple frequencies and new systems
	Failure probability	FMEA	More data, changing systems
	Failure rate (small/brief errors)	FMEA	Greater focus due to shift in requirements
	Exclusion	Separation (Group/Solution)	Better detection for single & multiple failures, but more complexity in the latter
	Time To Alert	Early detection techniques (e.g. <i>difference test</i> for SGEs)	Higher processing burden depending integrity monitoring technique

INSPIRe - Overall project description and context

- Overall goal ensure maritime PNT information is provided to the required level of <u>Integrity</u>:
 - within the UK & its coastal waters, as part of an overall resilient PNT solution
 - 18 months project ESA's Navigation Innovation and Support Programme (NAVISP)
- Builds on MarRINav (Maritime Resilience and Integrity of Navigation addressed the needs for:
 - The Blackett Report (GoS, 2018) CNIs dependency on GNSS
 - Trustworthy PNT as sea space gets cluttered (energy production & autonomous systems)
 - Need for requirements for maritime-resilient and high integrity PNT
 - GNSS-cored system-of-systems conceptual architecture & development plan
 - Evolutionary & incremental approach for timely and cost-efficient:

 \checkmark improvements to maritime PNT integrity & resilience

Resilience and Integrity

- MarRINav detime is cosidion contained in the second seco
 - Original Steady State (OSS), Disruptive Phase (DP)
 - Recovery Phase (RP), Depth of disruption (DoD), New Steady State (NSS)
 - When Δt (DP time + RP time) = 0 and NSS =/or better than OSS, then system is **ROBUST**

INSPIRe focuses on (facilitated by stakeholder proactive engagement)

- User level (R)AIM including dual-frequency multi-constellation GNSS
- Role of SBAS
- Ground-based systems for system level integrity to support user-level integrity
- Value of crowd-sourced, user-derived integrity data
- Flexible to design for development of system-of-systems for resilient PNT
- Identification of value-add beyond the maritime sector